Endbericht

Kurzexpertise:

Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

Im Auftrag

des Bundesministeriums des Innern
Kurzexpertise

„Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern“

Dezember 2010

im Auftrag des Bundesministeriums des Inneren

Autoren

Bauhaus-Universität Weimar
Professur Siedlungswasserwirtschaft
Prof. Dr.-Ing. Jörg Londong (Federführung),
Dipl.-Ing. Julia Alexeeva-Steininger

Professur Raumplanung
Prof. Dr. phil. Max Welch Guerra

Professur Abfallwirtschaft
Dipl.-Ing. Daniel Meyer M.Sc.

INAWA, Ingenieurleistungen Abwasser, Wasser, Abfall, Weimar
Dipl.-Ing. Sonja Sauer,
Dipl.-Verwaltungswirt Sven Steinbrück

Tuttsahs & Meyer GmbH, Aachen
Prof. Dr.-Ing. Markus Schröder,
Dipl.-Ing. Caroline Kobel,
Dr.-Ing. Manja Steinke,
Dipl.-Ing. Nicole Müllerstedt
1. ZIELSETZUNG UND METHODIK

2. EINFÜHRUNG

3. AUSWIRKUNGEN DES DEMOGRAFISCHEN WANDELS AUF DIE ABFALLENTSORGUNG

3.1 Aufgabe der Abfallwirtschaft

3.2 Stand der rechtlichen, technischen und wirtschaftlichen Strukturen in der Abfallentsorgung

3.2.1 Rechtliche Grundlagen

3.2.2 Technische und wirtschaftliche Strukturen

3.3 Entwicklung der Abfallströme

3.4 Analyse der Auswirkungen

3.5 Maßnahmen

3.5.1 Technische Maßnahmen

3.5.2 Betriebswirtschaftliche Maßnahmen

3.5.3 Organisationsbetriebliche Maßnahmen

3.5.4 Veränderungen des politisch-rechtlichen Rahmens

3.6 Synopse Abfallentsorgung

4. AUSWIRKUNGEN DES DEMOGRAFISCHEN WANDELS AUF DIE WASSERVERSORGUNG

4.1 Aufgabe der Wasserversorgung

4.2 Stand der rechtlichen, technischen und wirtschaftlichen Strukturen in der Wasserversorgung

4.2.1 Rechtliche Grundlagen

4.2.2 Technische Strukturen

4.2.3 Organisatorische Strukturen

4.2.4 Kostenstruktur

4.3 Analyse der Auswirkungen

4.4 Maßnahmen

4.4.1 Technische Maßnahmen

4.4.2 Betriebswirtschaftliche Maßnahmen

4.4.3 Organisatorische Maßnahmen

4.4.4 Ergebnisse einer Befragung von Wasserversorgern

4.5 Synopse Wasserversorgung

5. AUSWIRKUNGEN DES DEMOGRAFISCHEN WANDELS AUF DIE ABWASSERENTSORGUNG

5.1 Aufgabe der Abwasserentsorgung

5.2 Stand der rechtlichen, technischen und wirtschaftlichen Strukturen in der Abwasserentsorgung

5.2.1 Rechtliche Strukturen

5.2.2 Technische Strukturen

5.2.3 Organisatorische Strukturen

5.2.4 Kostenstrukturen

5.3 Analyse der Auswirkungen
1. **Zielsetzung und Methodik**

Zielsetzung

Zielsetzung der vorliegenden Studie ist es, auf Basis bisher durchgeführter Untersuchungen zukunftsweisende strategische Überlegungen anzustellen, um den vom demografischen Wandel besonders betroffenen Gemeinden und Regionen Lösungs- und Gestaltungsmöglichkeiten bei der Umstrukturierung und/oder Neuorganisierung ihrer Aufgaben im Bereich der Daseinsvorsorge an die veränderte Nachfrage anzubieten und darzulegen, welchen Handlungsspielraum sie benötigen, um eine zukunftsgerechtete nachhaltige Infrastrukturentwicklung auf kommunaler Ebene sicherzustellen.

In der Studie wird der gegenwärtige Stand der Forschung und der politischen Diskussion konzentriert zusammengefasst und bereits erprobte bzw. in Erprobung befindliche zukunftsweisende Lösungsansätze werden aufgezeigt. Möglich und sinnvoll erscheinende Veränderungen werden identifiziert, Hemmnisse diskutiert und Vorschläge für eine Schwerpunktsetzung abgeleitet. Die Studie soll als Beitrag zum Demografiebericht des BMI dazu dienen, nach vorne blickend die Zukunft zu gestalten.

Methodik

Zunächst wurde der gegenwärtige Forschungs- und Wissensstand im Bereich der Abfallentsorgung, Trinkwasserversorgung und Abwasserentsorgung zusammengefasst. Einbezogen wurden publizierte Darstellungen von erfolgreichen aber auch gescheiterten Beispielen in den neuen Ländern. Durch Einbindung der European Water Association (EWA) konnten zudem Informationen aus der Europäischen Union einbezogen werden. Bei der Analyse der Beispiele wurden die rechtlichen, ordnungspolitischen, administrativen und/oder finanziellen Randbedingungen mit beleuchtet. Eine Synopse der wesentlichen Erkenntnisse zu jedem der drei betrachteten Bereiche bildet die Basis für die Analysen und Empfehlungen. (Kapitel 3, 4 und 5)

Die politische Debatte auf Ebene des Bundes und der Länder und ausgewählter Kommunen wurde so aufbereitet, dass ein Überblick zu dem Stand der Diskussionen im Hinblick auf Organisation und Finanzierung von Infrastruktur möglich ist. Hemmnisse und Signale für mögliche Strukturreformen wurden so erkennbar (Kapitel 6).

Hierauf aufbauend wurden die vorhandenen Ver- und Entsorgungsstrukturen (Technik, Organisation, Finanzierung) untersucht und mit den zuvor analysierten Problemen in Relation gebracht. So wurden Hinweise auf mangelnde Nachhaltigkeit (hohe Risiken, geringe Flexibilität, Kostentreiber ...) identifiziert. (Kapitel 7)

Die aus dieser Analyse ableitbaren wesentlichen Verbesserungspotenziale wurden beschrieben und durch Empfehlungen konkretisiert, die Handlungsoptionen zur Neu-
organisation der technischen Infrastruktur in den Bereichen Wasser, Abwasser und Abfall beinhalten. Hierbei werden zudem Hinweise auf über den Betrachtungsbereich hinausgehende Synergiepotenziale gegeben. (Kapitel 8)

2. Einführung

In der Studie wird daher u. a. auch der Frage nachgegangen, ob es sinnvoll ist, die existierenden Strukturen und technischen Systeme ebenso wie deren Finanzierungsmodelle zu erhalten und lediglich den verbleibenden Bürgern höhere finanzielle Belastungen aufzuerlegen, oder ob es sinnvoll ist strukturelle und systemtechnische Veränderungen anzustoßen.

Die Debatte, ob bei der Entwicklung der Ver- und Entsorgungsinfrastruktur weiterhin vorrangig zentrale oder auch wieder - zumindest teilweise - dezentrale Systeme zum Einsatz kommen sollen, ist bereits im Gange und wird sich in naher Zukunft noch verschärfen. Es ist daher notwendig, sich mit einer langfristig wirksamen Konzeption für die vom demografischen Wandel besonders betroffenen Regionen zu befassen. Hierbei muss die technische Infrastruktur in Zusammenhang mit der Organisation (Betrieb, Instandhaltung) und der Finanzierung betrachtet werden.
Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

Notwendige, zum Teil auch unbequeme Fragestellungen zu Lösungs- und Gestaltungsmöglichkeiten der Gemeinden bei der Umstrukturierung und/oder Neuorganisation ihrer Aufgaben im Bereich der Daseinsvorsorge an die veränderte Nachfrage und zum Handlungsspielraum, der eine zukunftsgerechte nachhaltige Infrastrukturerwicklung auf kommunaler Ebene sicherstellt, müssen identifiziert und beantwortet werden. Die vorliegende Studie leistet einen Beitrag hierzu.

3. Auswirkungen des demografischen Wandels auf die Abfallentsorgung

3.1 Aufgabe der Abfallwirtschaft

Aufgabe der Abfallwirtschaft ist zunächst die Entsorgung von Abfällen. Im Bereich der Siedlungsabfälle stellt dies eine öffentlich-rechtliche Aufgabe der Daseinsvorsorge dar.

3.2 Stand der rechtlichen, technischen und wirtschaftlichen Strukturen in der Abfallentsorgung

3.2.1 Rechtliche Grundlagen

Zielsetzung

- Neue EU-rechtlich harmonisierte Begriffsbestimmungen (insbesondere Abfallbegriff, Nebenprodukte, Ende der Abfalleigenschaft, Verwertung, Beseitigung)
- Einführung der neuen fünf-stufigen Abfallhierarchie (Vermeidung, Vorbereitung zur Wiederverwendung, Recycling, sonstige Verwertung, Beseitigung)
- Schaffung einer Rechtsgrundlage für Abfallvermeidungsprogramme
- Einführung von Recycling- und Verwertungsquoten für Siedlungsabfälle (65 Prozent) sowie für Bau- und Abbruchabfällen (80 Prozent) - jeweils ab 2020
- Einführung einer flächendeckenden Getrenntsammlung von Bioabfällen (ab 2015)
- Schaffung von verordnungsrechtlichen Grundlagen für die Einführung einer "Wertstofftonne" (gemeinsame Erfassung von Verpackungen und stoffgleichen Nichtverpackungen)
- Absicherung der "dualen Entsorgungsverantwortung" von privater und öffentlich-rechtlicher Entsorgung, insbesondere der gewerblichen Sammlung von getrennt gehaltenen Haushaltsabfällen zur Verwertung
- Entbürokratisierung des Genehmigungsverfahrens für Sammler, Beförderer, Händler und Makler
- Verbesserung des Qualitätsprofils der Entsorgungsfachbetriebe.
Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

Organisation

In den neuen Bundesländern ist die Aufgabe der Abfallentsorgung auf die Landkreise und kreisfreien Städte als öffentlich-rechtliche Entsorgungsträger im Sinne des § 13 Abs. 1 des Kreislaufwirtschafts- und Abfallgesetzes übertragen worden. Sie erfüllen diese Aufgabe als pflichtige Selbstverwaltungsauflage.

Die öffentlich-rechtlichen Entsorgungsträger können ihre Pflichten auf andere Aufgabenträger wechselseitig ganz oder teilweise übertragen oder zu deren Wahrnehmung anderweitige organisationsrechtliche Entscheidungen treffen.

U. A. im Abfallgesetz des Landes Sachsen-Anhalt, § 3 (4) wird geregelt, dass die Landkreise den kreisangehörigen Gemeinden auf deren Antrag die stoffliche Verwertung von zu überlassenden Abfällen sowie das Einsammeln und Befördern von Abfällen übertragen können, wenn das Wohl der Allgemeinheit nicht beeinträchtigt wird und die obere Abfallbehörde der Übertragung zustimmt.

3.2.2 Technische und wirtschaftliche Strukturen

Die drei Hauptkomponenten der technischen Strukturen in der Abfallwirtschaft sind die Logistik, die Abfallverwertungs- und Behandlungsanlagen, sowie die Deponien zur Abfallablagerung. Dabei weist die erste Komponente die größte Flexibilität gegenüber Änderungen in der Abfallmenge- und Zusammensetzung auf. Anlagen und insbesondere Deponien weisen hingegen längere Planungs- und Abschreibungszeiträume auf, wodurch deren Flexibilität geringer ist.

In der Entsorgungslogistik gibt es eine Reihe von diversen Einflussfaktoren. Dazu gehören örtliche Gegebenheiten:

- Gebietsgröße,
- angeschlossene Einwohner,
- Anzahl der Haushalte,
- Abfallarten und -aufkommen,
- sowie Transportentfernung zur Entsorgungsanlage.

Einen ebenfalls großen Einfluss hat die Organisation der Abfallsammlung:

- Abfuhr- und -intervalle,
- Fahrzeugbesatzung,
- Hol-/Bringsysteme,
Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

- Voll-/Teilservice,
- Trennung von Sammlung und Transport, sowie
- getrennte oder gemischte Abfuhr.

Weiterhin von Bedeutung ist die eingesetzte Technik:
- Art, Anzahl, Nutzlast und Auslastung der Fahrzeuge, sowie
- Größe, Anzahl, Füllgrad und Bereitstellungsgrad der Behälter [Hauser, 2007].

Diese Vielzahl an Einflussfaktoren in der Abfallogistik deutet auf die vielfältigen Möglichkeiten zur Anpassung hin, welche die bereits erwähnte Flexibilität dieser Komponente der Abfallwirtschaft ausmacht.

Abb. 3.1: Inputmengen ausgewählter Anlagen in der Abfallwirtschaft (Gesamtabfallaufkommen von 2000 bis 2008) (Datengrundlage: [Destatis, 2010])

3.3 Entwicklung der Abfallströme

Der Anfall von Siedlungsabfällen hat sich seit Inkrafttreten des KrW-/AbfG 1996 kaum geändert, jedoch hat sich der Anteil der getrennt gesammelten Wertstoffe an

Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

Abb. 3.3: Abfallzusammensetzung (Datengrundlage: [Destatis, 2010])

1. Bruttoinlandsprodukt pro Einwohner
2. Säuglingssterblichkeitsrate
3. Bevölkerungsanteil zwischen 15 und 59 Jahren
4. Haushaltsgröße
5. Lebenserwartung bei Geburt
6. Anteil Arbeitskräfte in der Landwirtschaft.

Der Bevölkerungsanteil zwischen 15 und 59 Jahren (Punkt 3) und die Haushaltsgröße (Punkt 4) können direkt mit dem demografischen Wandel in Verbindung gebracht werden. Die restlichen Faktoren sind jedoch nahezu unabhängig davon. Demnach dürfte der demografische Wandel keinen allzu großen Einfluss auf das Abfallaufkommen in Städten ausüben. Werden der Fehlerquote dieses städtischen Modells von 8% (ein guter Wert) noch die unterschiedlichen Gegebenheiten der suburbanen und ländlichen Räume hinzugerechnet, so lassen sich die Unsicherheiten erahnen, welche die Abschätzung des demografischen Einflusses auf das Abfallaufkommen in Deutschland mit sich bringen. Diese beiden Gründe, der geringe Einfluss und die schwierige Abschätzung, sind wahrscheinlich dafür verantwortlich, dass bisher so wenige Arbeiten zur Abfallwirtschaft im demografischen Wandel angestrengt wurden.

Als ein Beispiel für die derzeit als gering angesehene Bedeutung des demografischen Wandels kann der AWV Ostthüringen herangezogen werden. Dieser geht in seinem Abfallwirtschaftskonzept 2010-14(20) davon aus, dass eine Verschiebung der Bevölkerungsanteile in den Siedlungsstrukturen keine relevanten Abweichungen
Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

im Abfallaufkommen zur Folge haben wird [AWV Ostthüringen, 2010]. Dabei deckt der AWV eine Region ab, die durch starke Schrumpfung gekennzeichnet ist [Jakubowski, 2006].

Die Bevölkerungsentwicklung und damit der demografische Wandel, ist in Abbildung 3.4 einer von vier externen Faktoren, welche von der Abfallwirtschaft nicht beeinflusst werden kann. Hinzu kommen noch die wirtschaftliche, technische und gesellschaftliche Entwicklung. Es ist aber auch dargestellt, dass die Politik der öffentlich-rechtlichen Entsorgungsträger (ÖRET) ebenfalls einen bedeutsamen Einfluss auf das Abfallaufkommen haben kann.

Abb. 3.4: Einflussfaktoren auf die Abfallmengenentwicklung [Sircar et al., 2003]
3.4 Analyse der Auswirkungen

Sich verändernde Abfallaufkommen werden die zwei Bereiche Logistik und Anlagen unterschiedlich beeinflussen.

Durch die allmähliche Abnahme der Gesamtbevölkerung, ist langfristig damit zu rechnen, dass in schrumpfenden Regionen ältere und weniger effiziente Anlagen stillgelegt werden um die Auslastung der verbleibenden Anlagen sicher zu stellen. Wie sich dieser Prozess vollziehen wird, ist zum großen Teil von der Organisationsstruktur der Abfallentsorger abhängig. Überregional kooperierende Unternehmen, ob kommunal oder privat, werden ihre verschiedenen Standorte jeweils optimal einsetzen, während regional begrenzte, konkurrierende Unternehmen nicht von Kooperationsvorteilen profitieren können und somit wirtschaftliche Nachtteile erleiden werden.

Abb. 3.5: Ertragsanteile pro Gebührenbestandteil [Lauruschkus et al., 2009]

Für den einzelnen Abfallwirtschaftsbetrieb wird sich evtl. die Frage nach der Sicherstellung der Gebührenfinanzierung aufwerfen. Eine Untersuchung von 13 deutschen Großstädten hat ergeben, dass deren Gebührenmodelle überwiegend stark vom Restabfallaufkommen abhängig sind (siehe Abbildung 3.5) und selten eine Grundgebühr für die Finanzierung der Aufgaben der Entsorger herangezogen wird.

Im Fall von sinkenden Restabfallmengen und steigender Wertstoffverfassung könnte dies zu einem Zielkonflikt zwischen Abfallvermeidung bzw. -verwertung und der angestrebten Gebührenstabilität führen [Lauruschkus et al., 2009]. Anhaltend hohe Erlöse bei Sekundärrohstoffen (SeRo) könnten zur Entschärfung dieses möglichen Konflikts beitragen. Dies setzt allerdings voraus, dass die für den Restabfall zuständigen Abfallwirtschaftsbetriebe nicht von privaten SeRo-Sammlern aus dem Markt gedrängt werden.
3.5 Maßnahmen

Mögliche Lösungsansätze für sich regional unterschiedlich ändernde Abfallaufkommen, welche auch durch den demografischen Wandel beeinflusst werden, sind:

1. Technische Maßnahmen.
2. Betriebswirtschaftliche Maßnahmen, die auf die Steigerung der betrieblichen Effizienz abzielen.
3. Veränderung der Organisationsstruktur.

3.5.1 Technische Maßnahmen

Zwischen Regionen mit jeweils sinkendem und steigendem Abfallaufkommen wird bei entsprechenden logistischen Voraussetzungen ein Ausgleich der Abfallmengen möglich sein. Über Ferntransporte kann die Auslastung der einen Anlagen sichergestellt werden, ohne dass auf der anderen Seite in neue Kapazitäten investiert werden muss. Der Ferntransport erfolgt i. d. R. auf der Straße, wie zum Beispiel bei der Verbringung der Restabfälle des AWV Ostthüringen in die über 50 km entfernte Verbrennungsanlage Zorbau, jährlich etwa 35.000 Tonnen [AWV Ostthüringen].

3.5.2 Betriebswirtschaftliche Maßnahmen

Um eventuell erhöhte Kosten für die Anpassung der Abfallbehandlungsanlagen und der Logistik zu verkaufen, sollten die Abfallwirtschaftsbetriebe frühzeitig ihre Gebührenmodelle auf deren Zukunftsfähigkeit überprüfen und gegebenenfalls fundamental anpassen. Die starke Abhängigkeit von den Restmüllgebühren sollte eventuell aufgehoben werden, zum Beispiel durch eine Kombination mit einer Grundgebühr nach Haushaltsgröße oder Wohnfläche oder anderen Faktoren. Um die Lenkungsfunktion der Gebühren hin zu weniger Abfällen und höheren Verwertungsquoten zu erhalten, sollte jedoch immer noch ein großer Anteil der Gebühren variabel sein. Um keine rechtswidrige Abfallbeseitigung zu provozieren, dürfen wiederum die Sparanreize auch nicht zu weit gehen. Hier muss also ein günstiger Mittelweg gefunden werden, welcher jedoch regional durchaus verschieden sein kann. Bei der Umsetzung solcher Gebührenanpassungen wird empfohlen die politische und öffentliche Kommunikation aktiv und frühzeitig einzuleiten. Damit soll ein Bewusstsein für die in den Gebühren
Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

enthaltenen Leistungen geschaffen und die Notwendigkeit der Anpassungen verständlich gemacht werden [Lauruschkus et al., 2009].

3.5.3 Organisationsbetriebliche Maßnahmen

Beispiele für Kooperationen

Ein weiteres Beispiel ist die 2007 gegründete Entsorgungswirtschaft des Landkreises Harz AöR. Mit elf abfallwirtschaftlichen Anlagen plant und organisiert die Anstalt des öffentlichen Rechts (AöR) die kommunale Abfallentsorgung für ca. 240.000 Einwohner.

3.5.4 Veränderungen des politisch-rechtlichen Rahmens
Im Rahmen der Änderungen durch den demografischen Wandel sollten die folgenden Punkte für die Sicherstellung einer ökonomisch und ökologisch effizienten Kreislaufwirtschaft beachtet werden.

- Sicherstellung der Einkommensbasis der öffentlich-rechtlichen Entsorger (örE) durch Andienungspflichten für Wertstoffe im Bereich der Siedlungsabfälle. Bei z. T. erheblich schwankenden Sekundärrohstoffpreisen sollte verhindert werden, dass private Entsorger die örE bei guten Preisen aus dem Markt drängen und die wenig profitable Entsorgung bei geringen Erlösen wieder von den örE zu tragen ist.

- Gleichwertige Förderung der Co-Vergärung von nachwachsenden Rohstoffen

3.6 Synopse Abfallentsorgung

4. Auswirkungen des demografischen Wandels auf die Wasserversorgung

4.1 Aufgabe der Wasserversorgung

Unter Wasserversorgung sind alle Maßnahmen zur Beschaffung, Aufbereitung, Speicherung, Zuführung und Verteilung von Trink- und Brauchwasser zu verstehen. Wasserversorgungsanlagen sind Anlagen einschließlich des eventuell dazugehören-
Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

Aufgabe der Wasserversorgung ist Trinkwasser

- in ausreichender Menge,
- mit dem erforderlichen Druck,
- in einwandfreier Qualität (frei von Krankheitserregern, genussstauglich und rein),
- zu einem angemessenen Preis

bereitzustellen, das heißt Sicherheit, Zuverlässigkeit und Wirtschaftlichkeit der Versorgung zu gewährleisten.

Die Löschwasserversorgung ist rechtlich eigenständig und unabhängig von der Wasserversorgung, sie ist aber tatsächlich und technisch meist mit der gesamten Wasserversorgungsanlage funktional verbunden.

4.2 Stand der rechtlichen, technischen und wirtschaftlichen Strukturen in der Wasserversorgung

4.2.1 Rechtliche Grundlagen

Anforderungen

Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

...ze; so haben die deutschen Wasserversorgungsunternehmen mit Abstand die geringsten Wasserverluste [Branchenbild, 2008].

Organisation

4.2.2 Technische Strukturen

Charakteristisch für Deutschland ist die bevorzugte Nutzung örtlicher Ressourcen für die Trinkwassergewinnung. Mit rund 74 Prozent stellt das Grundwasser inkl. Quellwasser die wichtigste Ressource für die Trinkwassergewinnung dar. Oberflächenwasservorkommen (Talsperren, Uferfiltrat, angereichertes Grundwasser, direkte Entnahmen aus Flüssen und Seen) werden zu 26 Prozent genutzt. [Branchenbild 2008]

Der Großteil der Trinkwasserversorgung in Deutschland erfolgt über das öffentliche Trinkwassernetz. Die Etablierung einer zentralen Trinkwasserversorgung mit hohem und in Deutschland einheitlichem Standard auch im ländlichen Raum war und ist erklärtes Ziel. Demzufolge ist heute ein Anschlussgrad von nahezu 100% erreicht.

Zusätzlich ist Löschwasser bereitzustellen. Unterschieden wird [Merkel, 2010]:

- Objektschutz: deckt das über den Grundschutz hinausgehende objektbezogene Risiko (wie für Versammlungsstätten, Hotels, Gewerbebetriebe) und liegt in der Verantwortung der Grundstücksbesitzer.

Das bedeutet, dass die Versorgungsunternehmen die notwendige Infrastruktur bereithalten müssen, ohne die Leitungen, trotz des sinkenden Wassergebrauchs im Durchschnitt, erheblich verkleinern zu können.

Hinsichtlich der Länge des Trinkwassernetzes liegen keine genauen Daten vor, insgesamt dürfte die Länge des Trinkwassernetzes in Deutschland bei rund 500.000 km (ohne Hausanschlussleitungen) liegen. [Branchenbild 2008]

4.2.3 Organisatorische Strukturen

Mit der Industrialisierung im 19. Jahrhundert wurden in den Städten zentrale Wasserversorgungssysteme eingeführt. Zur Finanzierung dieser Versorgungssysteme wurden oft Verträge zwischen deutschen Städten und privaten englischen Gesellschaften abgeschlossen (z. B. Fox & Crampton, London, und der Stadt Berlin), bis zum Jahr 1900 insgesamt rund 90 derartiger Verträge. Die Städte nahmen nach Auflösung der Verträge die gegründeten Gesellschaften zwar in die eigene Hand, gliederten sie aber nicht in die städtische Verwaltung ein, sondern führten sie mit ande-
ren kommunalen Dienstleistungen in „Stadtwerken“ zusammen. Dagegen wurde die Abwasserbeseitigung als hoheitliche, kommunale Aufgabe begriffen und der Stadtverwaltung (Tiefbauämter) zugewiesen. Bis heute wird in Deutschland die Abwasserentsorgung in steuerrechtlicher Sicht als hoheitliche Aufgabe gesehen, während die Wasserversorgung wie die Energieversorgung als gewerbliche Tätigkeit gilt. [Merkel, 2010]

Die Kommunen haben im Rahmen ihrer verfassungsrechtlich garantierten Selbstverwaltung nach Art. 28 GG die Pflichtaufgaben der Organisation der Wasserversorgung nach Maßgabe der Landeswassergesetze. Ihnen obliegt die Entscheidung, die Versorgung in Eigen- oder in Fremdregie durchzuführen. Es existieren bereits viele verschiedene Unternehmensformen, die sich nach der Organisationsform und dem Privatisierungsgrad in drei Gruppen einteilen lassen:

- Nicht rechtsfähige Organisationsformen (Regie-, Eigenbetriebe),
- Rechtsfähige Organisationsformen: öffentlich-rechtliche oder privatrechtliche (GmbH, AG), jeweils mit und ohne Beteiligung privater Dritter,
- Organisationsformen der interkommunalen Zusammenarbeit wie Zweckverbände oder Gemeinschaftsgenossenschaften.

In den letzten Jahren verstärkt sich die Tendenz hin zu privatrechtlichen Rechts- und Organisationsformen (siehe Abbildung 4.1), welche 64% der gesamten Wasserabgabe abdeckten (Stand 2005) [Branchenbild 2008] und mindestens 40% der kommunalen Infrastrukturinvestitionen (kommunale Wasserver- / Abwasserentsorgung, Energieversorgung, Abfallwirtschaft, kommunale Verkehrsmittel) erbringen [Jakubowski, 2006, S.239]. Innerhalb der öffentlich-rechtlichen Organisationsformen überwiegen die Wasser- und Bodenverbände sowie Zweckverbände, während die Eigen- und Regiebetriebe insgesamt nur 5% bezogen auf das Wasseraufkommen ausmachen (Stand 2005) (siehe Abbildung 4.2) [Branchenbild 2008].
Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

Abb. 4.2: Entwicklung der Unternehmensformen der öffentlichen Wasserversorgung (Angaben in Prozent) [Branchenbild 2008]

Abb. 4.3: Unternehmensformen in der öffentlichen Wasserversorgung (Deutschland gesamt / Anteile in Prozent bezogen auf das Wasseraufkommen) [Branchenbild 2008]

4.2.4 Kostenstruktur

Ein wichtiger Faktor bei der langfristigen Ver- und Entsorgungssicherheit ist die Berücksichtigung der Kosten für die Instandhaltung und Erneuerung der technischen Anlagen. Insbesondere die lange Nutzungsdauer der kapitalintensiven technischen Anlagen führt zu geringer Flexibilität. So haben Trinkwassernetze eine Nutzungsdauer von bis zu 100 Jahren, andere Anlagen z. B. Talsperren sogar noch länger.

Die Kostenstruktur der Wasserversorgung ist in den letzten Jahren weitgehend gleich geblieben. Aufgrund dieser für die Wasserwirtschaft typischen Kostenstruktur sowie des in den letzten Jahren deutlich zurückgegangenen Wassergebrauchs wird die Aufteilung in Grundpreis / -gebühr und eine(n) mengenabhängige(n) Preis / Gebühr bzw. eine stärkere Gewichtung des Grundpreises diskutiert.

Das Verhältnis der Kosten für die Vorhaltung der Anlagen zu den unmittelbar auf die abgegebene Wassermenge zu beziehenden Kosten beträgt etwa 80% zu 20%. Der Wasserpreis dagegen ist heute im Mittel, d.h. auf den verkaufte Kubikmeter Wasser bezogen, zu 10% Anschlusspreis (Grundpreis), zu 90% Arbeitspreis. [Merkel, 2010]

Mit Gesamtinvestitionen von über 100 Mrd. € seit 1990 ist die deutsche Wasserwirtschaft einer der größten Auftraggeber für die Privatwirtschaft, da Leistungen für Planung, Bau und Betrieb größtenteils an Fremdfirmen vergeben werden. Insgesamt

Abb. 4.5: Kostenstruktur in der Wasserversorgung 2004 (Anteile in Prozent) [Branchenbild 2008]

Auch wenn im Allgemeinen über (zu) hohe und steigende Kosten für die Trinkwasserversorgung geklagt wird, scheint dies eher vor einem diffusen Hintergrund zu erfolgen. In 2007 wurden die Kunden zum dritten Mal bundesweit und repräsentativ über die Wasserversorgung befragt (BDEW-Kundenbarometer 2007, in [Branchenbild 2008]).

Die einwohnerspezifischen Kosten für Trinkwasser sind in den vergangenen Jahren gestiegen. Abbildung 4.6 zeigt, dass diese Steigerung allerdings unter der Inflationsrate lag.

Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

Angaben in Euro pro Einwohner und Jahr

Quellen: BDEW; Statistisches Bundesamt

Abb. 4.6: Jährliche Ausgaben des Kunden für Trinkwasser im Vergleich zur Inflation [Branchenbild 2008]

4.3 Analyse der Auswirkungen

Abb. 4.7: Hauptprobleme der Versorgungsunternehmen [Mohajeri et al., 2006, S. 49]

Der Rückgang des Wasserverbrauchs ergibt sich aus verschiedenen Aspekten: Zum einen spielt hier der Bevölkerungsrückgang eine Rolle. Aber auch der gesunkene spezifische Wasserverbrauch, der durch das Sparverhalten der Kunden sowie Wasser sparende Haushaltsgeräte zu Stande kommt, trägt zum Problem bei. Gleichzeitig ist vielerorts eine starke Abnahme der Wasserabgabe an industrielle und gewerbliche Kunden infolge des Wegfalls der Industrie, der zunehmender Eigenversor-
gung oder der Einführung von Wasserkreisläufen in Betriebsprozesse zu verzeichnen. Insbesondere in ländlich geprägten Kommunen ist auch das Phänomen verbreitet, dass das Regenwasser gesammelt und für verschiedene Zwecke (vor allem zur Toilettenspülung) verwendet wird, was den Trinkwasserplatz weiterhin mindert.

Die Emissionen der Einnahmequellen ist zum Einen auf die Einnahmeverschulden durch abnehmenden Wasserverbrauch zurückzuführen. Die Verringerung der Kundenzahl führt zur absoluten Zunahme der spezifischen Einnahmen und Gebühren, die die Unterhaltungskosten der Anlagen, von denen die Fixkosten den größten Anteil beinhalten, bleiben fast gleich. Hinzu kommt noch der erhöhte betriebliche Aufwand (z.B. Kosten für Spülungen (Wasseraustausch)), die jedoch prozentual nicht so stark ins Gewicht fallen (ca. 3% laut [Koziol et al., 2005]). Die Tarifstruktur ist oftmals nicht geeignet, die Entwicklungsdynamik aufzufangen, weil die Tariferhöhungen den Bürgern in ländlichen oftmals wirtschaftlich schwachen Regionen mit hoher Arbeitslosigkeit nur schwer zugemutet werden können. Zu berücksichtigen ist auch die Tatsache, dass sich der Anteil älterer, nicht erwerbstätiger Gemeindemitglieder aufgrund der gegenwärtigen Entwicklung der Altersstruktur weiterhin vergrößert und die Einnahmequelle der Kommune aus Steuergeldern zusätzlich geschmälert wird.

„Die These, dass sich Kostensteigerungen für die Verbraucher, Verbrauchsrückgang, Unterauslastung, dadurch verursachte unproduktive Folgekosten zur Systemerhaltung und Kapitalarmut der Aufgabenträger gegenseitig verstärken und zu einem wachsenden Sanierungsstau im Versorgungsgebiet führen, hat sich bestätigt.“ [Mohajeri et al., 2006, S. 50]

4.4 Maßnahmen
Die in Studien publizierten Lösungsansätze für Probleme mit demografischem Hintergrund können ganz allgemein in vier Bereiche untergliedert werden:

1. Technische Maßnahmen
 - Querschnittsreduzierung, Rückbau, Stilllegung,
 - Maßnahmen der Betriebsführung (Durchspülen von Wassernetzen, Intensivierte Maßnahmen zur Trinkwasservorbehandlung, zusätzliche abnehmerseitige Anlagen zur dezentralen Wasseraufbereitung),
 - Computerunterstützte Planungshilfen (Simulationsmodelle).

2. Betriebswirtschaftliche Maßnahmen, die auf die Steigerung der betrieblichen Effizienz abzielen, wie z.B.
 - systematische Überprüfung der Investitionsplanung hinsichtlich zukünftigen Verbrauchsentwicklung,
 - Änderung der Preis- und Beitragsstrukturen,
 - Personalabbau,
 - Erschließung neuer Versorgungsgebiete,
 - Verringerung der Wasserverluste im Netz (was u.U. je nach Art der Verluste kontraproduktiv ist).

3. Veränderung der Organisationsstruktur, wie z.B.
 - Outsourcing einschließlich Ausschreibung der technischen und/oder kaufmännischen Betriebsführung,
 - regionale sowie überregionale Kooperation kommunaler Unternehmen
 - Fusion mit privaten Unternehmen.

4.4.1 Technische Maßnahmen
Wie oben erläutert, verursacht der Bevölkerungsrückgang zusammen mit der Abnahme des einwohnerspezifischen Wasserverbrauchs die Unterlastung der Wasserversorgungssysteme. Dies führt zu technischen Funktionsstörungen. Nach Angaben von Herz (2005, zit. in [Holländer et al., 2008]) müssen ab einer Unterlastung von 10 bis 20% betriebstechnische Maßnahmen ergriffen werden, ab einem Verbrauchsrückgang von 30 bis 50% sind Anpassungs- bzw. Rückbaumaßnahmen erforderlich. Ab einem Bevölkerungsrückgang von 75% kann die ökonomische Tragfähigkeit eines dispers schrumpfenden Wohngebietes unterschritten werden, so dass die anfallenden Kosten durch die erzielten Einnahmen nicht mehr gedeckt werden [Koziol et al., 2005].

Die nachfolgend aufgeführten technischen Maßnahmen basieren größtenteils auf den Erfahrungen, welche bei Stadtumbauprogrammen in ebenfalls demografisch betroffenen ostdeutschen Städten Anwendung fanden. Hier sind die Maßnahmen zusammengestellt, die im gemeinsamen Gutachten zu den Folgen des Stadtumbaus von Versorgungsunternehmen aus Halle/Saale, Dessau, Stendal und Magdeburg als sinnvolle und effektive Anpassungslösungen identifiziert wurden [EGA / IWM, Positionspapier, 2002]. Sie können in

- Rückbaumaßnahmen
- Umbaumaßnahmen und
• Maßnahmen der Betriebsführung untergliedert werden.

Studien, die sich explizit mit Maßnahmen im ländlichen Raum befassen, wurden nicht identifiziert. Daher muss eine Übertragung der Erkenntnisse aus dem städtischen Kontext vorgenommen werden.

Rückbaumaßnahmen sind dann wirtschaftlich schwer darzustellen, wenn die Leitungen noch nicht abgeschrieben sind. Dies ist bei nach der Wende hergestellten Leitungen regelmäßig der Fall.

Umbaumaßnahmen sollen der Verbesserung der hydraulischen Funktion des Netzes dienen und beinhalten

• Neubaumaßnahmen zur Schaffung neuer Ringverbindungen,
• Neubaumaßnahmen zum Umschluss alter nicht mehr benutzbarer Leitungen sowie
• punktuelle Ersatz alter überdimensionierter Leitungen durch kleinere Nennweiten.

Maßnahmen der Betriebsführung zielen vor allem auf die kurz- bis mittelfristige Verbesserung der Versorgungsproblematik – lange Verweilzeiten des Wassers im Netz, Stagnationserscheinungen. Vorrangig kommen hier Spülungen des Trinkwassernetzes zum Einsatz.

Rohrnetzspülungen

In anderen Fällen werden Spülungen als Reaktion auf die Kundenbeschwerden, bei der Feststellung der Überschreitung des Trübungsgrenzwertes, oder vorbeugend in bekannten Risikoleitungen (z.B. in unvermaschten Endleitungen) durchgeführt (Information aus der Befragung der Wasserversorger). Insbesondere in warmen Sommermonaten ist von einer verstärkten Spülnotwendigkeit auszugehen.

beide der gezielten Überleitung des Spülwassers in die Schmutzwasserkanalisation positive Effekte hinsichtlich der dortigen Ablagerungsproblematik erzielt werden.

Verringerung der Aufenthaltszeit im Netz

Nachdesinfektion

Tab. 4.1: Aufkeimungerscheinungen im Leitungsnetz Ursachen und Gegenmaßnahmen [Wricke, Korth, 2006]

<table>
<thead>
<tr>
<th>Ursachen</th>
<th>Maßnahmen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jahreszeitliche Schwankungen in Talsperren- und Uferfiltratwasserwerken</td>
<td>Gleichmäßiger stabiler Betrieb der Aufbereitung</td>
</tr>
<tr>
<td></td>
<td>Verzicht auf Netzumstellungen in kritischen Phasen</td>
</tr>
<tr>
<td>Austausch von Filtermaterialien in biologisch arbeitenden Filterstufen</td>
<td>Zeiweiser Austausch des Materials in den einzelnen Filtern</td>
</tr>
<tr>
<td>Große Schwankungen in der Reinwasserabgabe und damit des vom Desinfek-</td>
<td>Vergleichmäßigung des Wasserwerks- und Netzbetriebes</td>
</tr>
<tr>
<td>tionsmittel beeinflussten Netzbereichs</td>
<td></td>
</tr>
<tr>
<td>Inbetriebnahme- bzw. Außerbetriebnahme einer Nachdesinfektion</td>
<td>Bei Inbetriebnahme Überwachung, wenn erforderlich Wasseraustausch</td>
</tr>
<tr>
<td></td>
<td>Außerbetriebnahme bei hohen Zugabemengen, möglichst stufenweise</td>
</tr>
<tr>
<td>Steuerungsbedingte erhöhte Desinfektionsmitteldosierung bei geringen</td>
<td>Vergleichmäßigung des Betriebes, ggf. Außerbetriebnahme bei sehr geringen</td>
</tr>
<tr>
<td>Durchflüssen</td>
<td>Durchflüssen bzw. Einsatz einer UV-Desinfektion</td>
</tr>
<tr>
<td>Sedimentaufwirbelung durch erhöhte Entnahme bzw. als Folge von Netzum-</td>
<td>Wasseraustausch, besser regelmäßige Spülungen</td>
</tr>
<tr>
<td>schieberungen</td>
<td></td>
</tr>
<tr>
<td>Veränderung des Einspeisepunktes in das Versorgungsnetz</td>
<td>Bei Bedarf für einen Übergangszeitraum regelmäßiger Wasseraustausch in einzelnen Leitungen</td>
</tr>
<tr>
<td>Netzmischung bei der Einspeisung von Wässern mit unterschiedlichen Nähr-</td>
<td>Zonentrennung bzw. zentrale Mischung</td>
</tr>
<tr>
<td>stoffgehalten</td>
<td></td>
</tr>
</tbody>
</table>

Aus oben ausgeführten Zusammenhängen werden vom TZW [Wricke, Korth, 2006] folgende Vorschläge zur Verhinderung der Aufkeimungerscheinungen abgeleitet:

- Nach Möglichkeit Verzicht auf Nachdesinfektion im Netz;
- Stabilisierung hydraulischer Fließverhältnisse im Netz. Regelmäßige Änderungen der Fließverhältnisse in Abständen von maximal 2 bis 4 Wochen sind dabei unproblematisch.
- Die Aufkeimungerscheinungen infolge Umstellung der Fließbedingungen können durch regelmäßigen Wasseraustausch in den betroffenen Leitungen beseitigt werden; die Einstellung stabiler Verhältnisse bedarf bei wöchentlichem Wasseraustausch 3 bis 4 Wochen.

Maßnahmen gegen Rostwasser

Die erhöhten Trübungen im Reinwasser, welche von Verbrauchern vermehrt bemängelt werden, sind häufig auf Rostwassererscheinungen zurückzuführen. Diese haben grundsätzlich zwei Ursprünge: der erhöhte Eiseneintrag mit Reinwasser oder die

Das gebildete Eisenhydroxid wird nur zu einem unbedeutenden Teil mit dem fließenden Wasser abtransportiert, der Rest wird in Rohrleitungen als Ablagerungen akkumuliert. Bei einer Veränderung der Fließverhältnisse, z.B. bei verstärkter Wasserabnahme, verursachen diese Ablagerungen zeitversetzt die Rostwassererscheinungen bei Verbrauchern.

Eine Rostwasserbildung durch instationäre Korrosion lässt sich am besten durch eine Sanierung des betroffenen Leitungsschnittes beseitigen. Übergangsweise kann durch die **Errichtung einer Dauerspülstelle** der Sauerstoffeintrag stabilisiert werden, was zur Vermeidung der reduzierten Verhältnisse und somit zur Verhinderung der Korrosionsprozesse führt. Führen die Korrosionsprozesse zu einer sehr schnellen Sedimentbildung, so können ggf. durch einen **Inhibitoreinsatz** die Sedimentbildung verringert und damit die Spülintervalle verlängert werden. Die Dosierung von Inhibitoren ist nur dann erfolgreich, wenn ein regelmäßiger Wasseraustausch (ggf. durch regelmäßige Spülungen) in Leitungen gewährleistet ist. Zu beachten ist außerdem, dass beim Einsatz von Phosphat-Inhibitoren als Folge der Bildung von Eisenphosphaten u.U. zu veränderten Mobilisierungs- und Sedimentationserscheinungen führt, wodurch es zu einer Sedimentbildung im Netzbereich kommen kann, die vorher nicht betroffen waren [Wricke, Korth, 2006].

Maßnahmen zur Löschwasserbereitstellung

Ein weiteres Problem der Wasserversorgungsunternehmen in kleinen Kommunen stellt die Bereitstellung des Löschwassers dar.
Rechtlich gesehen obliegt die Pflicht der Bereitstellung von Löschwasserreserven nach Landesgesetzen der Gemeinde. Z.B. nach Art. 1 Abs. 1 BayFwG haben die Gemeinden als Pflichtaufgabe im eigenen Wirkungskreis neben dem technischen Hilfsdienst dafür zu sorgen, dass drohende Brand- oder Explosionsgefahren beseitigt und Brände wirksam bekämpft werden. Zur Erfüllung dieser Pflichtaufgabe des abwehrenden Brandschutzes haben sie die notwendigen Löschwasserversorgungsanlagen bereit zu stellen und zu unterhalten.

Die Wasserversorger sind nicht automatisch, sondern allenfalls im Wege entsprechender Vereinbarungen mit der Kommune zur Sicherstellung der Löschwasserversorgung verpflichtet. Wird die Wasserversorgung von einem privaten Unternehmen abgewickelt, so muss die Gemeinde sich gegebenenfalls an den zusätzlichen Kosten für die Bereitstellung des Löschwassers beteiligen.

Der Löschwasserbedarf wird ausschließlich über die Anzahl der an der Brandstelle kommenden Löschwassereinrichtungen ermittelt. Die sämtlichen Löschwasserentnahmemöglichkeiten sollten gemäß W 405 eine Löschwasserentnahme von mindes tens 24 m³/h in einem Umkreis von 300 m um das Brandobjekt über Dauer von 2 h ermöglichen. Hiernach gilt für die meisten Gemeinden ein Löschwasserbedarf von 96 m³/h aus dem Trinkwassernetz [Seemann, 2010, S.159].

Löschwasserbedarf einer kleinen Gemeinde

Beispiel zur Illustration der Verhältnisse: Der langjährig ermittelte, maximale Trinkwasserbedarf je Stunde in einer bayerischen Gemeinde mit 1.452 Einwohnern beträgt 21,96 m³/h. Bei einem Löschwasserbedarf von 96 m³/h liegt der Anteil für die Trinkwasserversorgung der Bewohner bei Auslegung des Netzes somit nur bei rund 19% des stündlichen Gesamtbedarfes mit Berücksichtigung des Löschwassers [Seemann, 2010].

Zur Vermeidung der Netzüberdimensionierung in kleinen Gemeinden (<5.000 Einwohner) mit allen negativen Folgen in der Funktionalität schlägt Seemann (2010) vor
die Bereitstellung des Löschwassers auf verschiedene Quellen aufzuteilen: Seen, Teiche, Löschwasserbrunnen, Netz. Der Rückgriff auf die Trinkwasserversorgung wäre in diesem Sinne nur eine unterstützende und begleitende Quelle. Dazu sollen für jeden konkreten Fall Konzepte und Strategien mit Berücksichtigung örtlicher Gegebenheiten entwickelt werden.

Einsparung bei den Energiekosten

Zur Vollständigkeit der Möglichkeiten betriebstechnischer Optimierung soll auch die Optimierung der Druckerhöhungsanlagen (Pumpstationen) mit dem primären Ziel der Senkung der Energiekosten genannt werden.

Betrachtet man die Lebenszykluskosten von den Pumpenanlagen von der Planung über die Installation, die Nutzung bis zur Demontage und Entsorgung, so fällt auf, dass die Energiekosten einen dominierenden Kostenfaktor darstellen. Sie betragen 80 bis 90% aller Lebenszykluskosten und übersteigen die Investitionskosten über die Lebensdauer um das Vielfache [Seemann, 2010, S.93].

Planungshilfen

Zur Planungs- und Betriebsunterstützung können computerunterstützte Planungshilfen eingesetzt werden.

Zur Abschätzung des prognostizierten Verbrauchsrückganges auf die Funktion des Trinkwassernetzes können hydraulische Simulationsmodelle sehr sinnvoll eingesetzt werden. Ein Beispiel dafür stellt das Tagessimulationsmodell im Programmsystem STANET® dar. Mit diesem Programm wurden z.B. die Planungen der Anpassungs-
Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

- Stagnationsgefährdung
- Fließwechselbereiche sowie
- Leitungsspezifische Transportzeiten

werden anschließend in das hydraulische Modell zurück übertragen und anschaulich dargestellt.

4.4.2 Betriebswirtschaftliche Maßnahmen

Im Rahmen des Kommunalabgabegesetzes (KAG) sind die Unternehmen zur Einhaltung des Kostendeckungsprinzips unter Berücksichtigung der Kosten für Substanzerhaltung und Refinanzierung der Anlagen verpflichtet. Neben dem Kostendeckungsprinzip gelten das Kostenüberschreitungssgebot sowie das Äquivalenzprinzip [Mohajeri et al., 2006, S.44]. Durch das Äquivalenzprinzip haben die öffentlich-

Infolge der demografischen Schrumpfung haben viele ostdeutsche Wasserversorger die Grundpreise bereits erhöht. Zu diesem verbrauchsunabhängigen Tarifsystem sollte jedoch die breite Zustimmung der Bevölkerung geben, die ohne informatorische Maßnahmen nicht überall selbstverständlich ist.

Tab. 4.2: Beispiele für Aufteilung der Wasserversorgungskosten auf Grundpreis und mengenabhängige Gebühren

<table>
<thead>
<tr>
<th>Wasserversorgungsunternehmen</th>
<th>Grundpreis (für Qn 2,5) € / Monat</th>
<th>Mengenpreis € /m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAWAG Brandenburg an der Havel (Stand 2006)</td>
<td>8,75</td>
<td>2,03</td>
</tr>
<tr>
<td>Wasserverband Lausitz (Stand 2006)</td>
<td>17,77</td>
<td>1,47</td>
</tr>
<tr>
<td>Stadtwerke Finsterwalde GmbH (Stand 2006)</td>
<td>6,56</td>
<td>1,64</td>
</tr>
<tr>
<td>Herzberger Wasser-Abwasserverband (Stand 2006)</td>
<td>9,08</td>
<td>1,31</td>
</tr>
<tr>
<td>Stadtwerke Elbe-Elster (Stand 2006)</td>
<td>14,45</td>
<td>1,61</td>
</tr>
</tbody>
</table>

Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

Tab. 4.3: Einwohnerspezifische Kosten für Hausanschluss-/Versorgungsleitungen bzw. für Hauptleitungen / übergeordnete Erschließung für vier Gemeindetypen [ECOPLAN, 2000]

<table>
<thead>
<tr>
<th>Größe (in 1000 Einwohner)</th>
<th>Randgemeinde</th>
<th>Regionalzentrum</th>
<th>Agglomerationszentrum</th>
<th>Stadt</th>
</tr>
</thead>
<tbody>
<tr>
<td>einwohnerspezifische Kosten für Hausanschluss-/Versorgungsleitungen (CHF/E*a)</td>
<td>140,9</td>
<td>107,7</td>
<td>80,2</td>
<td>58,9</td>
</tr>
<tr>
<td>einwohnerspezifische Kosten Hauptleitungen / übergeordnete Erschließung (CHF/E*a)</td>
<td>226,9</td>
<td>150,6</td>
<td>160,1</td>
<td>141,6</td>
</tr>
</tbody>
</table>

In wieweit die Belange der Infrastrukturangpassung bei der Entwicklung der Siedlungsstruktur berücksichtigt werden können, hängt von mehreren Randbedingungen ab. Trotz seiner Vorzüge stößt der flächenhafte Rückbau auf viele Hindernisse wie beispielsweise betriebswirtschaftliche Interessen der Immobilieneigentümer, so dass es in der Realität zu einem dispersen Rückbau kommt, was die Länge der Netze nicht verkürzt, sondern nur den Mengendurchsatz verringert mit allen negativen Folgen für die Kosten und Betrieb [Kempmann, 2008].

Tab. 4.4: Kostenkennwerte für Infrastrukturum- und –rückbau im Zuge von Stadtbau [ESA / IWM Endbericht, 2002]

<table>
<thead>
<tr>
<th>Trinkwasserversorgung</th>
<th>Spezifische Umbaukosten €/m² Wfl.</th>
<th>Buchwertverluste Mittelwert (Minimum und Maximum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kosten des Infrastrukturumbaus in Plattenbauwohnquartieren in Halle, Magdeburg, Dessau, Stendal</td>
<td>6,90 (4,58 – 8,56)</td>
<td>1000 (170 – 2120)*10³€</td>
</tr>
<tr>
<td>Orientierungswerte für Rückbau und Anpassung</td>
<td>3 - 12</td>
<td>0 – 20 €/m² Wfl. Für alle Infrastrukturen</td>
</tr>
</tbody>
</table>

Die Umlegung erforderlicher Investitionen für Anpassungsmaßnahmen auf die Trinkwassergebühr im ganzen Versorgungsgebiet hatten Gebührenänderungen zwischen 0,007 und 0,027 €/m³ zur Folge [ESA / IWM Endbericht, 2002, Planungswerte für das Jahr 2010].

4.4.3 Organisatorische Maßnahmen

Die Anpassungs- und Modernisierungsmaßnahmen aufgrund demografischen Wandels und der momentanen Entwicklung des Wasserverbrauchs erfordern erhebliche finanzielle Mittel, die aufgrund der finanziellen Krise in den meisten Kommunen durch die öffentliche Hand nicht oder nur anteilig getätigt werden kann [Jakubowski, 2006, S. 238]. Gleichzeitig behindert das in manchen Bundesländern festgeschriebene Örtlichkeitsprinzip die Kommunen in ihrem wirtschaftlichen Agieren und nimmt ihnen die Chance, durch Erschließung neuer Marktsegmente den Einnahmerückgang durch Verbrauchsrückgang auszugleichen (Schön, Wendt-Schwarzburg, In: [BBR / BMVBS, 2009]).

Die Veränderung in der Organisation der Infrastruktur kann auf zwei Wegen erfolgen [Beetz, Neu, In: BBR / BMVBS, 2009]:

- Privatisierung der öffentlichen Daseinvorsorge bei der Voraussetzung, dass entsprechend gut vernetzte und finanziell starke Akteure vorhanden sind;
- Zentralisierung von Infrastruktur mit einhergehender Verringerung der Angebotsdichte in der Fläche zugunsten von mehr Effizienz, Angebotstiefe und Konkurrenz.

Als kritische Betriebsgröße für Versorgungsunternehmen werden in der Literatur 30.000 bis 40.000 Einwohner genannt; unterhalb dieser Größe lassen sich mit großer Sicherheit Größenvorteile durch Zusammenschluss erzielen [Mohajeri et al., 2006, S.56].
Als eine mögliche zentralisierte Organisationsform öffentlich-rechtlicher Unternehmen wird ein gemeinsames Kommunalunternehmen (gKU) einer gesamten Region vorgeschlagen [Mohajeri et al., 2006, S. 58]. Diese Organisationsform verbindet nach Meinung der Autoren die Vorzüge einer Anstalt öffentlichen Rechts mit dem Nutzen regionaler Kooperation. Sie behält landesrechtliche Flexibilität hinsichtlich der Sitzungsgestaltung, um kommunale Eingriffsrechte zu sichern; ist kommunalkreditsfähig und kann gleichzeitig selbständig vom Management geführt werden.

Zur Verbesserung der Wettbewerbsorientierung der Versorgungsunternehmen schlagen die Autoren der Studie „Zukünftige Infrastruktur in schrumpfenden Regionen“ eine konsequente Umsetzung des bestehenden gesetzlichen Rahmens (BBgBO §100 Abs. 3) vor, in dem die Kommunen verpflichtet sind, alle Leistungen, die von einem privaten Anbieter kostengünstiger zu erbringen sind, nach Ausschreibung an diesen zu übertragen [Mohajeri et al., 2006, S. 57].

Weitere Aspekte zur Verbesserung der Effizienz öffentlich-rechtlicher Versorgungsunternehmen wurden im Bericht der Bundesregierung vom 15.03.2006 zusammengetragen:

- Einführung der Kooperation bis hin zur Fusion von Aufgabenträgern;
- Einführung des Benchmarkings auf freiwilliger Basis;
- Verbesserung des Informationsangebotes für Kommunen (Wasserleitfaden);
- Prüfung einer Ausweitung des Öffentlichkeitsprinzips und der steuerlichen Gleichbehandlung von Wasserver- und Abwasserentsorgung;
- Ermöglichung der Übertragung der Aufgabenpflicht auf Dritte auch in der Abwasserentsorgung durch Einführung einer Verordnung „Allgemeine Bedingungen für die Entsorgung des Abwassers“.
Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

Beispiele für die Veränderung der Organisationsstruktur

In den 60er Jahren konnte Gelsenwasser den abnehmenden Wasserabsatz aufgrund des rückläufigen industriellen Wasserbedarfs sowie sinkenden spezifischen Wasserverbrauchs durch zusätzliche Wasserlieferungen an benachbarte Versorgungsunternehmen (Wiederverkäufer) abfangen [Hörschen und Kröger, 2003, S. 261]. Durch die Gewinnung neuer Kunden konnten die Folgen des demografischen Wandels um längere Zeiten (bis Ende der 90er Jahre) verzögert werden.

Beispiel Stadt Brandenburg

1994 hat die Stadt Brandenburg an der Havel die Durchführung der Wasserver- bzw. Abwasserentsorgung an die BRAWAG übertragen. Die BRAWAG ist heute 100%ige Tochter der teilprivatisierten städtischen Werke Brandenburg an der Havel (51%, StWB, 36,75% E.ON edis AG Fürstenwalde, 12,25% RWE Westbrandenburgische Beteiligungsgesellschaft mbH Dortmund).

Die BRAWAG hat in ihrem Versorgungsgebiet einen Wasserverbrauchsrückgang von 2-3% jährlich zu verzeichnen. Die Aufbereitungskapazitäten sind von 65.000 m³/d zur Wendezeit auf 14-16.000 m³/d gesunken. Von ehemals 7 Wasserwerken werden heute nur noch zwei betrieben, wobei immer noch Überkapazitäten vorhanden sind. Aus diesem Grund soll künftig noch ein Wasserwerk stillgelegt werden und das ganze Versorgungsgebiet soll aus dem Wasserwerk Mahlenzien beliefert werden. Nach der letzten Wasserpreisanpassung 2004 beträgt der mengenabhängige Preis 2,03 €/m³ und der Grundpreis für den Wasserzähler (Qn 2,5) liegt bei 8,75 €/Monat. Wobei zu beachten ist, dass der Trinkwasserbereich keine Baukostenzuschüsse erhält.

Beispiel Landkreis Oberspreewald-Lausitz

hohen Arbeitslosigkeit in der Region und insgesamt schlechter wirtschaftlicher Lage ist der weitere Anstieg der Wasserpreise nicht zumutbar. Zur Kompensation der rückläufigen Wasserabgabe erweitert der WAL seit Jahren die Belieferung mit Trinkwasser an benachbarte Verbände. Inzwischen beträgt der Anteil des Verkaufs bei ca. 50% der gesamten jährlich aufbereiteten Trinkwassermenge. Der Wasserpreis liegt bei 1,47 €/m³ und die Grundgebühr wird in Abhängigkeit von der Wasserzählergröße berechnet (Qn 2,5 – 17,77 €/Monat).

Auch hier werden die überschüssigen Aufbereitungskapazitäten sukzessiv zurückgebaut. Das größte Wasserwerk Tettau, welches 1955 für Kapazität von 72.000 m³/d errichtet wurde, wurde im Rahmen der Sanierung zur Deckung der Grundlast auf die Kapazität von 23.000 m³/d reduziert. Die Verbrauchsspitzen sollen aus dem Wasserwerk der Vattenfall Europe Mining AG / Schwarze Pumpe gedeckt werden. Dadurch konnten in Summe Investitionen von 5 Mio. € gespart werden.

4.4.4 Ergebnisse einer Befragung von Wasserversorgern

Dieser Fragenbogen wurde an 32 Wasserversorgungsunternehmen in den Bundesländern Thüringen und Sachsen versandt. 10 Unternehmen haben ausgefüllte Fragebögen zurückgeschickt, die als Grundlage für nachfolgende Auswertungen dienen. Folglich können hier getroffene Aussagen nicht als repräsentativ betrachtet werden. Sie geben jedoch eine Vorstellung über das Agieren und Reagieren der Versorger in der Situation des Bevölkerungsrückganges und helfen, die primär aus städtischen Gebieten abgeleiteten Probleme und Maßnahmen zu bewerten.

Tab. 4.5: Rückgang der Wasserabgabe bei den Unternehmen, die an der Befragung teilgenommen haben

<table>
<thead>
<tr>
<th>WVU</th>
<th>Rückgang der Wasserabgabe</th>
</tr>
</thead>
<tbody>
<tr>
<td>OEVBM GmbH, Masserberg</td>
<td>3%</td>
</tr>
<tr>
<td>ZV Wasser / Abwasser Zeulenroda</td>
<td>9,6% (Industrie: 11,4%, Haushalte: 8,9%)</td>
</tr>
<tr>
<td>KWA Meiningen Umland</td>
<td>4% (Haushalte)</td>
</tr>
<tr>
<td>KAT Artern</td>
<td>9%</td>
</tr>
<tr>
<td>ZV Wasser / Abwasser Orla</td>
<td>15%</td>
</tr>
<tr>
<td>WAV Hildburghausen</td>
<td>14,5%</td>
</tr>
<tr>
<td>WZV Weimar</td>
<td>Keine genauen Angaben</td>
</tr>
</tbody>
</table>
Die Gründe liegen vor allem in der Schließung von Industriebetrieben bzw. der vermehrten industriellen Eigenversorgung über Brunnen. Bei Haushalten ist der Rückgang mehrheitlich auf das Sparverhalten der Kunden zurückzuführen, die demografische Schrumpfung spielt eine untergeordnete Rolle.

Abb. 4.8: Angaben zur Beeinträchtigungen der Trinkwasserqualität (Angaben in %)

In vier von zehn Unternehmen sind bis jetzt keine Beeinträchtigungen der Trinkwasserqualität erfasst worden. Die anderen haben in ihrem Betrieb bei routinemäßiger Wasseranalyse schon mehrmals (5 bis 10 mal pro Jahr) verschiedene Mängel feststellen müssen (siehe Abbildung 4.8). Die häufigsten davon sind Trübung und Rostwassererscheinungen, die auch von den Verbrauchern visuell leicht erfassbar sind und demnach oft zu Beschwerden führen. Bei zwei Unternehmen stellen erhöhte Koloniezahlen im Trinkwasser ein Problem dar, was auf erhöhte Durchflusszeiten des Wassers im Verteilungssystem hindeutet. Nur in einem Unternehmen wurden Überschreitungen mikrobiologischer Parameter nach der geltenden Trinkwasserverordnung dokumentiert.

Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

Abb. 4.9: Verringerung der Wassergewinnungs- und Aufbereitungskapazitäten (Angaben in %)
Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

Zur Finanzierung der oben beschriebenen Anpassungsmaßnahmen verwenden 60% der befragten Unternehmen nur Entgelte, 20% Entgelte und Fördermittel vom Land. Fördermittel vom Bund hat keiner der befragten Unternehmen erhalten. Zwei der Versorger haben keine baulichen Maßnahmen durchgeführt und somit auch keine Mittel aufgewendet. Eins davon ist ein sehr kleines Unternehmen, was die Wasserversorgung aus dem Quellenwasser ohne Aufbereitung betreibt. In der Tabelle 4.6 sind Angaben zu den Wassertarifen in befragten Wasserversorgungsunternehmen nach Grundpreis und mengenabhängigen Gebühren aufgeteilt angegeben (alle Angaben inkl. 7% MwSt.).

Alle befragten Wasserversorger geben an, dass die Aufwendungen für Anpassungsmaßnahmen infolge des Wasserverbrauchrückganges sowie des demografischen Schrumpfens bislang nicht zur Erhöhung der Wassertarife geführt haben. Jedoch erwarten vier von zehn befragten Unternehmen eine Steigerung der Wasserpreise in nächster Zukunft.
Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

Tab. 4.6: Wassertarife in den befragten Wasserversorgungsunternehmen

<table>
<thead>
<tr>
<th>WVU</th>
<th>Grundpreis [€/Monat]</th>
<th>Mengenabh. Gebühr [€/m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>OEVBM GmbH, Masserberg</td>
<td>0,00</td>
<td>1,78</td>
</tr>
<tr>
<td>ZV Wasser / Abwasser Zeulenroda *</td>
<td>8,21</td>
<td>1,96</td>
</tr>
<tr>
<td>KWA Meiningen Umland **</td>
<td>10,00</td>
<td>1,90</td>
</tr>
<tr>
<td>KAT Artern</td>
<td>10,67</td>
<td>1,67</td>
</tr>
<tr>
<td>ZV Wasser / Abwasser Orla *</td>
<td>11,36</td>
<td>2,34</td>
</tr>
<tr>
<td>WAV Hildburghausen</td>
<td>12,84</td>
<td>1,82</td>
</tr>
<tr>
<td>WZV Weimar **</td>
<td>14,45</td>
<td>1,72</td>
</tr>
<tr>
<td>WAZ Oberridesfeld</td>
<td>11,24</td>
<td>1,11</td>
</tr>
<tr>
<td>Stadtwerke Schnaudertal **</td>
<td>k.A.</td>
<td>k.A.</td>
</tr>
<tr>
<td>Eigenbetrieb der Gemeinde Tabarz</td>
<td>5,35</td>
<td>2,10</td>
</tr>
</tbody>
</table>

* 99 bis 100% FWV
** Teilversorgung aus Fernwassersystemen
(1) Verkleinerung der Nennweiten
(2) Abschieberung von Maschen
(3) Rückbau
(4) Neuer richtung fehlender Ringleitungen
(5) Brunnenzuschüttung

Als weitere zusätzliche Vorschläge zur Verbesserung der Situation haben die befragten Wasserversorgungsunternehmen folgende Ansätze genannt:

- Senkung der Vorgaben des Gesetzgebers (Statistik Anforderungen in der TrinkWV),
- Personalabbau,
- stärkere Kooperation zwischen öffentlich-rechtlichen Aufgabenträgern auf überregionaler Ebene,
- besseres Marketing und Öffentlichkeitsarbeit,
- Förderung der Stadtumbauprogramme nur unter der Bedingung der Berücksichtigung der technischer Infrastruktur,
- stärkere Berücksichtigung der Fixkosten in der Grundgebühr bei gleichzeitiger Senkung der Verbrauchsgebühr,
- Förderung der erforderlichen Investitionen durch öffentliche Mittel (Bund, Land).

4.5 Synopse Wasserversorgung

Eine zentrale Trinkwasserversorgung ohne Qualitätseinbußen muss auch im ländlichen Raum sichergestellt werden.

Die Vorschläge zu technische Gegenmaßnahmen (Rückbaumaßnahmen, Umbaumaßnahmen und Maßnahmen der Betriebsführung) sind vielfältig, es gibt zahlreiche erfolgreiche Beispiele. Allen gemein ist, dass sie zu mehr oder weniger hohen Kostensteigerungen führen.

In der Organisation der Aufgabenerfüllung scheinen bei der Trinkwasserversorgung die größten Potenziale zu liegen.

Als Maßnahmen aus unternehmerischer Perspektive werden vorgeschlagen:

• Betriebswirtschaftliche Maßnahmen, die auf die Steigerung der betrieblichen Effizienz abzielen, wie z.B. systematische Überprüfung der Investitionsplanung hinsichtlich zukünftiger Verbrauchsentwicklung, Personalabbau, Er schließung neuer Versorgungsgebiete, Verringerung der Wasserverluste im Netz.

• Veränderung der Organisationsstruktur, wie z.B. Outsourcing einschließlich Ausschreibung der technischen und/oder kaufmännischen Betriebsführung,
regionale sowie überregionale Kooperation kommunaler Unternehmen, Fusion mit privaten Unternehmen.

• Veränderung des politisch-rechtlichen Rahmens.

Der ländlich periphere Raum scheint für privatrechtliche Unternehmen wirtschaftlich nicht sehr interessant zu sein.

5. Auswirkungen des demografischen Wandels auf die Abwasserentsorgung

5.1 Aufgabe der Abwasserentsorgung

Diese Ziele müssen heute zusätzlich im Einklang mit der übergeordneten Zielsetzung, den natürlichen Wasserhaushalt möglichst wenig zu beeinträchtigen, umgesetzt werden.

Mit der EU-Wasserrahmenrichtlinie [EU-WRRL, 2000] werden die Zielsetzungen Hygiene – Überflutungsschutz – chemischer Gewässerschutz um die Forderung nach
einem integrierten Gewässerschutz erweitert. Leitlinien zur Umsetzung einer integra-
len Bewirtschaftung der Teilsysteme Siedlungsgebiet, Entwässerungssystem, Klär-
anlage und Gewässer sind im Arbeitsblatt DWA-Ä 100 [DWA, 2006] dargestellt.

Neben der Entsorgungssicherheit in den Siedlungen, dem Gewässerschutz, der Nut-
zungssicherung der Gewässer ist mit der Abwasserentsorgung auch ein gesellschaf-
licher Aspekt verbunden [Herbst, 2008]. Die Gesellschaft und der einzelne Nutzer
erwarten von einem Abwasserentsorgungssystem, dass es zu jeder Zeit funktioniert,
d.h. für den Einzelnen kostengünstig und betriebssicher sowie entsprechend den
gesetzlichen Vorgaben das Abwasser beseitigt. Weiterhin werden ein hoher Bedie-
nungskomfort und eine geringe Eigenverantwortung für die technischen Anlagen er-
wartet. Somit sind die wesentlichen Faktoren für die Akzeptanz eines Systems, wenn
die Kosten für die Abwasserentsorgung, der Bedienungskomfort und der Umfang der
Eigenverantwortung als angemessen empfunden werden. Aspekte, die die Wohnort-
qualität beeinflussen wie Geruchs- und Geräuschemissionen oder ästhetische Beein-
trächtigungen aus Anlagen der Abwasserentsorgung, werden dagegen oft unter-
schiedliche wahrgenommen.

Abb. 5.1: Schutzgüter und Schutzziele der integralen Siedlungsentwässerung
[DWA, 2006]
5.2 Stand der rechtlichen, technischen und wirtschaftlichen Strukturen in der Abwasserentsorgung

5.2.1 Rechtliche Strukturen

Emissionsanforderungen

Artikel 3 EU, 91/271/EWG: Die Mitgliedstaaten tragen dafür Sorge, dass alle Gemeinden (Agglomerationen) bis zu folgenden Zeitpunkten mit einer Kanalisation ausgestattet werden:

- .. bis zum 31. Dezember 2005 in Gemeinden ab 2.000 EW.
- .. ist die Einrichtung einer Kanalisation nicht gerechtfertigt, weil sie entweder keinen Nutzen für die Umwelt mit sich bringen würde oder mit übermäßigen Kosten verbunden wäre, so sind individuelle Systeme oder andere geeignete Maßnahmen erforderlich, die das gleiche Umweltschutzniveau gewährleisten.

Technische Standards

In den europäischen und nationalen Normen sowie in den Regelwerken der fachtechnischen-wissenschaftlichen Vereinigungen wird der jeweilige Stand über geeig
nete Verfahren, Maßnahmen, Konstruktionen und Betriebsweisen zur Erfüllung der rechtlichen Aufgaben dokumentiert. Sie gelten im technischen Standard als allgemein anerkannte Regel der Technik bzw. Stand der Technik. Relevante Normen für die Abwasserbehandlung und Abwasserableitung sind z.B.

- deutsche Normen in DIN, europäische Normen in DIN-EN,
- das DWA-Regelwerk mit Arbeits- und Merkblättern.

Die Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (DWA) hat in ihrem Regelwerk Arbeitsblätter, Hinweise und Merkblätter u. A. zu Entscheidungssystemen und zur kommunalen Abwasserbehandlung herausgegeben. Die Arbeitsblätter 100 und 200 haben für die Konzeption der Abwasserentsorgung grundlegende Bedeutung:

- DWA-A 100, Dezember 2006, Leitlinien der integralen Siedlungsentwässerung,

Beispiel für die Anwendung von den a.a.R.d.T. abweichender Standards

Entsorgungsstandards im Hinblick auf gleichwertige Lebensverhältnisse

Für eine Studie zu Siedlungsentwicklung und Infrastrukturfolgekosten befassten sich Siedentop et al. (2006) mit der Frage, welche technische Ausstattung der Abwasserentsorgung im ländlichen Raum als Standard anzusetzen ist. In Anlehnung an die Unterscheidung in Gemeinden unter 2.000 E und ab 2.000 E nach EU-Kommunal-
auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

Für Strukturtypen innerhalb von gering verdichteten Gemeindetypen werden individuelle Systeme, die eine den qualitativen Anforderungen der Abwasserordnung adäquate Form der Abwasserentsorgung gewährleisten, angenommen. Dies gilt aufgrund ihrer Entfernung zum nächstgelegenen Siedlungskörper ebenfalls für Streusiedlungen aller Gemeindetypen. Für alle anderen Strukturtypen innerhalb der moderat verdichteten und verdichteten Gemeindetypen wird eine Kanalisation mit Anchluss an eine zentrale Abwasserbehandlungsanlage als Standard angesetzt.

Maßgeblicher Faktor für die Festlegung einer Regelausstattung für Niederschlagswasser ist die Bodenversiegelung, da die Menge des abzuleitenden/zu versickernden Niederschlagswassers mit der versiegelten Fläche korreliert, gleichzeitig die für eine Versickerung zur Verfügung stehende Fläche abnimmt. Für das bei Siedentop et al. (2006) betrachtete Untersuchungsgebiet wurde ab einem Versiegelungsgrad von 50% eine zentrale Regenwasserableitung als Normausstattung abgeleitet.

Beispiel „Richtlinie zur Förderung von Kleinkläranlagen im Freistaat Thüringen des Thüringer Ministeriums für Landwirtschaft, Naturschutz und Umwelt (gültig 01.10.2009 bis 30.09.2012)“:

Organisation

Die Gemeinden regeln im eigenen Wirkungskreis durch Satzung insbesondere:

- die Benutzung ihres Eigentums und ihrer öffentlichen Einrichtungen,
- die Festsetzung von Gebühren und Beiträgen für die Benutzung,
- den Anschluss an die Kanalisation (Anschlusszwang) und die Benutzung dieser Einrichtungen (Benutzungszwang), wenn sie ein dringendes öffentliches Bedürfnis dafür feststellen. Die Satzung kann Ausnahmen vom Anschluss- oder Benutzungszwang zulassen; sie kann ihn auf bestimmte Teile des Gemeindegebiets und auf bestimmte Gruppen von Grundstücken oder Personen beschränken. Auch bei Verzicht auf den Anschluss- und Benutzungszwang (Kleinkläranlagen) bleibt die Gemeinde für die Fäkalschlammbfuhr verantwortlich.

Die Gemeinde bestimmt unter Berücksichtigung gesetzlicher und technischer Vorschriften selbst, wie sie die Daseinsvorsorge der Abwasserbeseitigung lösen will. Der Ordnungsrahmen zur Festsetzung von Gebühren und Beiträgen wird durch die Kommunalabgabengesetze (KAG) gegeben.

Die Erteilung einer wasserrechtlichen Erlaubnis zur Einleitung von gereinigtem Abwasser in ein Gewässer und die Überwachung dieser Einleitung ist eine hoheitliche Aufgabe des übertragenen Wirkungskreises, die von der unteren Wasserbehörde (kreisfreie Städte, Landkreise oder Landratsämter) wahrgenommen wird.

5.2.2 Technische Strukturen

In den neuen Bundesländern vollzog sich die Entwicklung analog zum bundesweiten Trend. Am Beispiel von Mecklenburg-Vorpommern ist die Entwicklung in Abb. 5.2 dargestellt. Bei einem Landesdurchschnitt von 86 % der Einwohner, die an eine zentrale Abwasserbehandlungsanlage angeschlossen sind, liegt der Anteil bei den großen Gemeinden/Städten bei fast 100%, während der Anschlussgrad bei kleinen Gemeinden bei rd. 55% liegt. Der Rest des Abwassers wird dezentral behandelt.
Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

Abb. 5.2: Einwohnerentwicklung und Anschlussentwicklung Mecklenburg-Vorpommern Quelle: Landesamt für Statistik Mecklenburg-Vorpommern

Zum Vergleich ist in Abbildung 5.3 die Anschlussentwicklung in den weiteren 4 neuen Ländern dargestellt. Thüringen bildet im Ländervergleich das Schlusslicht, was den Anschlussgrad an eine zentrale Abwasserbehandlung angeht. Die vorhandenen dezentralen Abwasserbehandlungsanlagen entsprechen meist nicht dem geforderten Stand der Technik nach Abwasserverordnung [AbwV, 2004].

Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

Abb. 5.3: Einwohnerentwicklung und Anschlussgrad neue Bundesländer
Quelle: Landesämter für Statistik Thüringen, Sachsen-Anhalt, Sachsen, Brandenburg

Neben der zentralen Abwasserinfrastruktur für mehrere Ortsteile oder Gemeinden, bestehend aus Kanalisation, den zugehörigen Regenentlastungsbauwerken und kommunalen Kläranlagen ist im ländlichen Raum somit die dezentrale Abwasserinfrastruktur noch von Bedeutung:

- Kleine Kläranlagen (Ortsteilkläranlagen), an die die Einwohner eines Ortsteiles über ein signifikantes Kanalnetz mit unvermeidbarem Fremdwasseranfall angelassen sind. Die biologische Abwasserreinigung erfolgt z.B. über Belebungsanlagen, Tauchkörperanlagen, Teiche, bepflanzte Bodenfilter.

- Kleinkläranlagen (Hauskläranlagen ausgelegt für 4, Gruppenkleinkläranlagen bis 50 angeschlossene Einwohner) mit kurzen Anschlussleitungen ohne Fremd- oder Regenwasser. Die Technik der biologischen Abwasserbehandlung in Kleinkläranlagen gleicht sich aufgrund der Mindestanforderungen an den Abwasserablauf den kleinen Kläranlagen an (Belebungsanlagen, Tauchkörperranlagen usw.).

- Abflusslose Gruben, aus denen das gesamte Abwasser in eine zentrale Kläranlage abgefahren werden muss.

51
Das Gros der mitteldeutschen TOK stammt aus den Jahren 1960 bis 1990. In dieser Zeit wurden mit viel Engagement und Sachverstand hohe Sachwerte geschaffen, von denen viele Bürger im ländlichen Raum noch heute profitieren. 23,3 % der in Thüringen an Kanäle angeschlossenen Einwohner nutzen Teilortskanäle. Damit ist Thüringen in Deutschland Spitzenreiter, gefolgt vom Saarland (5,4%), Sachsen-Anhalt (5,1%) und Sachsen (1,6%).

Abb. 5.3: Wegeseitegraben innerhalb einer Ortschaft, Umok/Fertőhumok, Ungarn 2010 (Foto Londong)

Teilortskanäle sind häufig aus einem System von Wegeseitengräben entstanden, die aufgrund der Geruchsbelästigung durch die Einleitung von nicht oder unzureichend gereinigtem Abwasser kanalisiert wurden. Die verwendeten Trassen sind hinsichtlich der Ableitung sehr effizient, entsprechen jedoch hinsichtlich ihrer Lage (außerhalb von Straßen und Gehwegen, auf Privatgrundstücken, ...) meist nicht den heute gültigen Standards. Die DDR-TGL 23425/01 hatte zu Bauzeiten der TOK festgelegt, dass diese vorrangig in unbefestigten Bereichen zu verlegen sind (im Gegensatz zur DIN 1998, die regelt, dass Abwasserleitungen vorzugsweise in der Fahrbahn unterzubringen sind). Dieser Umstand spiegelt sich heute noch in vielen TOK-Netzen wi-

- die Nutzung oder Wiederverwertung von Stoff- und Wasserströmen im betrachteten Einzugsgebiet,
- das Angebot von kosteneffizienten Alternativen zu bestehenden Systemen,
- das Angebot an die abwasserbeseitigungspflichtigen kommunalen Körperschaften zur Ergänzung der konventionellen Entwässerungssysteme sowie
- die Erweiterung der Verfahrenspalette.

NASS ergänzen die bekannten Systeme und sind bei allen Variantenuntersuchungen mit einzubeziehen. Die DWA bereitet ein entsprechendes Arbeitsblatt hierzu vor.

5.2.3 Organisatorische Strukturen

Große Abwasserverbände

Auf Initiative des Essener Oberbürgermeisters Erich Zweigert wurde im Jahr 1904 in Deutschland der erste Abwasserverband, die Emschergenossenschaft, durch ein preußisches Sondergesetz eingerichtet. In späteren Jahren wurden nach diesem Vorbild weitere Abwasserverbände gegründet, "wo sie infolge der fortschreitenden Verschmutzung nötig wurden" [Musterle, 1953].

Die 10 wichtigsten bis 1950 gegründeten Wasserverbände sind [Imhoff 1953, S. 129]:

- 1904, Emschergenossenschaft, Essen
- 1913, Linksniederrheinische Entwässerungsgenossenschaft, Moers
- 1913, Ruhrverband, Essen
- 1926, Lippeverband, Dortmund
- 1927, Niersverband, Viersen
- 1928, Schwarzelsterverband, Bad Liebenwerda
- 1930, Wupperverband, Wuppertal
- 1933, Muldenwassergenossenschaft, Chemnitz
- 1934, Weiβelsterverband, Gera

In den Abwasserverbänden wurden alle diejenigen, die Abwasser in Vorfluter einleiteten, die zu einem gemeinsamen Flussgebiet gehörten, und dadurch zu seiner Verschmutzung beitrugen, zusammengeschlossen. Mit der Gesamtzahl von 16,56 Mio. Einwohnern umfassten sie circa ein Viertel der Gesamteinwohnerzahl Deutschlands; der relativ geringe Flächenanteil von knapp 60 000 km² resultiert daraus, dass die Abwasserverbände nur in dicht besiedelten Industriegebieten gebildet wurden.

Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

Zentrale Struktur in der DDR

Die Wasserwirtschaft der ehemaligen DDR entwickelte sich ganz anders als die der alten Bundesländer. Sie wurde von einer dezentralen, kommunalen Struktur in eine in hohem Maße zentralisierte verwandelt, in der viele wasserwirtschaftliche Funktionen zusammengefasst wurden. Die Umwandlung vollzog sich ausgehend von der

- Bildung eines eigenen Plangebietes für die Wasserwirtschaft im Jahre 1951 über
- Die nächsten Schritte waren 1958 die Schaffung von 7 Wasserwirtschaftsdiraktionen nach Flussgebieten (Auflösung der 15 Z-Betriebe)
- 1975 Bildung von 5 Wasserwirtschaftsdirektionen

[van der Wall und Kraemer, 1991].

Rekommunalisierung in den Neuen Ländern

Der meist historisch und politisch bedingte Zuschnitt der Organisationseinheiten erfüllt nicht optimal die Anforderungen einer flussgebietsorientierten Gewässerbewirtschaftung, während technische und betriebswirtschaftliche Anforderungen erfüllt werden können.

Gegenwärtig existieren im Wesentlichen öffentlich-rechtliche Organisationsformen der kommunalen Abwasserbeseitigung:

- Anstalten öffentlichen Rechts,
- Eigenbetriebe und eigenbetriebsähnliche Einrichtungen,
- Regiebetriebe,
- Zweckverbände, Wasserbünde, sondergesetzliche Verbände.

Privatwirtschaftlich organisierte Abwasseranlagenbetreiber, die Aufgaben der Abwasserbehandlung erfüllen, spielen eine geringe Rolle (Stand 2009: In ganz
Deutschland Anteil 9% gewichtet nach den gemeldeten Einwohnern, 4% nach der Anzahl der Betriebe).

Die Differenz im prozentualen Anteil je nach Gewichtung zeigt, dass privatwirtschaftliche Unternehmen größere Einheiten bevorzugen, die Wachstum versprechen. In den kleinen Gemeinden der ländlichen Regionen gibt es bevorzugt Regiebetriebe, was sich an der Differenz im prozentualen Anteil nach Anzahl der Betriebe (24%) bzw. nach Anzahl der gemeldeten Einwohner (9%) ablesen lässt (siehe Abbildungen 5.4 und 5.5 Daten aus: Wirtschaftsdaten 2009, [Leptien et al., 2010]).

Abb. 5.4: Organisationsformen der Unternehmen, die Aufgaben der Abwasserbehandlung erfüllen, nach der Anzahl der Betriebe (Wirtschaftsdaten 2009, [Leptien et al., 2010])

Abb. 5.5: Organisationsformen der Unternehmen, die Aufgaben der Abwasserbehandlung erfüllen, gewichtet nach den gemeldeten Einwohnern (Wirtschaftsdaten 2009, [Leptien et al., 2010])
5.2.4 Kostenstrukturen

Kostenstrukturen Abwasserbeseitigung

Abb. 5.6: Durchschnittliche Kostenstruktur in der Abwasserbeseitigung 2008, gewichtet nach den gemeldeten Einwohnern (Wirtschaftsdaten 2009, [Leptien et al., 2010])

Der Anteil der Fixkosten an den Kosten der Abwasserbeseitigung beträgt über 60% (Abschreibung, Zinsen, Personal). Investitionen in der Abwasserbeseitigung werden zum großen Teil im Bereich Abwasserbeleitigung getätigt, in den Bestand der Kanalnetze fließt 32%, in den Neubau und die Erweiterung der Netze rund 31%. Damit werden über 60% der Investitionsausgaben derzeit in langlebige Netzstrukturen investiert.

Verteilung der Investitionen Abwasserbeseitigung

Abb. 5.7: Verteilung der Investitionskosten auf die unterschiedlichen Bereiche gewichtet nach gemeldeten Einwohnern (Wirtschaftsdaten 2009, [Leptien et al., 2010])

Beispiel VV-KAG Brandenburg [VV-KAG Brandenburg, 2005]:

Es wird zwischen Benutzungsgebühren (§ 6 KAG Brandenburg) und Beiträgen (§ 8 KAG Brandenburg) unterschieden.

Nur bei den dem öffentlichen Verkehr gewidmeten Straßen, Wegen und Plätzen ist die Beitragserhebung durch bindende Sollvorschrift zwingend (BauGB).

5.3 Analyse der Auswirkungen

Abb. 5.8: Überblick über die in der UBA-Studie betrachteten Auswirkungen des demografischen Wandels auf die Abwasserentsorgung [Hillenbrand et al., 2010]
Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

Technische (betriebliche) Auswirkungen:

- **Kanalnetz**: Stark reduzierter Schmutzwasserabfluss in Trennkanalisationen hat unzureichende Schleppspannungen, verstärkte Ablagerungen, anaerobe Zustände mit den entsprechenden Belästigungen wie erhöhter Geruchsemision, beschleunigter Korrosion an zementgebundenen Baustoffen wie Beton, aber auch Metallen, sowie einem unerwünschten Vorabbau organischer Substanz zur Folge.

- **Kläranlage**: Verschlechterung der Abwasserbeschaffenheit durch Vorabbau im Kanalnetz und in Vorklärbecken durch hydraulische Unterlastung, daraus resultiert die stoffliche Unterauslastung von Anlagenkomponenten (z.B. Belebungsbecken und Schlammfaulbehälter). Längere Aufenthaltszeiten können aber auch zu einer Erhöhung der Reinigungsleistung führen.

 Die Bedeutung für die Kläranlage ist abhängig von der Anlagenkonfiguration, ob sie Anpassungsmöglichkeiten durch Außerbetriebnahme von Anlagenteilen, einer lastabhängigen Steuerung oder einer Änderung von Verfahrensschritten bietet [Hillenbrand et al., 2010].

Zusammenfassend kann festgestellt werden, dass die demografische Entwicklung für die Abwasserentsorgung kein grundsätzliches technisches Problem darstellt, da es entsprechende Gegenmaßnahmen gibt (s. Kapitel 5.4).

Die Alterung der Bevölkerung kann jedoch mit einem höheren Komfortbedürfnis und einer geringeren Innovationsfreude verbunden sein [DWA, 2008].

Ökonomische Auswirkungen

Unter Schrumpfungsbedingungen kommt Kostenremanenten eine zentrale Bedeutung zu. Auf geringere Bevölkerungszahlen kann nur teilweise mit Anpassungen des Angebots reagiert werden. Die Kosten müssen bei gleich bleibender organisatorischer und materieller Infrastruktur (Fixkosten) von weniger Nutzern getragen werden.

Mit unterauslastungsbedingten Mehrkosten beim Betrieb von technischen Infrastrukturen ist nach Siedentop et al. (2006) im wesentlichen in Gemeindetypen, in denen...

Gerade im Hinblick auf die soziale Infrastruktur aber auch die technische Infrastruktur weitet sich die „Schere“ zwischen Finanzbedarf und kollektiven wie individuellen Finanzierungsmöglichkeiten zunehmend auf [Beckmann, 2008]. Hier wird auch der demografische Faktor „Alterung“ im Hinblick auf die zukünftige Rentenhöhe eine Rolle spielen: „Letzten Endes heißt das, dass dort, wo besonders wenig Kaufkraft vorhanden ist, die Versorgungskosten am höchsten steigen“ [Fabian, 2006].

Exkurs: Beispiel Sachsen-Anhalt

Schonfrist für Kleinkläranlagen läuft ab

(28.07.2010, Naumburger Tageblatt, online)

Rund 300 Grundstückseigentümer aus dem Landkreis SANGERHAUSEN haben schon Post von der Unteren Wasserbehörde bekommen. Sie werden aufgefordert, ihre veralteten Kleinkläranlagen dem heutigen Stand der Technik anzupassen.

Was bedeutet, dass entsprechend des Landeswassergesetzes künftig nur noch mechanisch und biologisch arbeitende Kleinkläranlagen zulässig sind. Oder aber, dass veraltete Anlagen verschlossen und in abflusslose Sammelgruben umfunktioniert werden, deren Dichtheit nachzuweisen ist.

Bürger, deren Abwasser bereits zentral geklärt wird oder deren Grundstücke in den nächsten sechs Jahren ans Kanalnetz angeschlossen werden, können demnach aufatmen. Die anderen aber umso weniger. "In Mansfeld-Südharz wird es etwa 1 600 Grundstücke geben, die ihr Abwasser dauerhaft dezentral entsorgen müssen", prophezeite Siegfried Schröder vom Landratsamt. Es werde aber "vermutlich noch einige Zeit dauern, bis alle Grundstückseigentümer eine Anordnung erhalten haben."

Laut Gesetz sollten die veralteten Anlagen schon bis Ende 2009 nachgerüstet sein. Was kurz vor Ultimo zu einem Aufschrei bei den Betroffenen geführt hatte. Immerhin können die Kosten, wie Schröder einräumt, durchaus "eine Tausend Euro betragen“. Das hänge vom Zustand der vorhandenen Anlage ab.

Organisatorische/strukturelle Auswirkungen

Die gegenwärtig vorhandene dezentrale und regional zum Teil sehr kleinteilige Organisationsstruktur ist gerade in schrumpfenden Regionen oftmals ein Hemmnis bei der Entwicklung tragfähiger Ver- und Entsorgungsstrukturen. Dies bezieht sich sowohl auf die geringe Größe der Entsorgungsbetriebe als auf administrative Schwierigkeiten, sobald die Grenzen von Gebietskörperschaften überschritten werden. Auch im Hinblick auf die in der Wasserrahmenrichtlinie geforderte integrierte Gewässerbewirtschaftung stehen kleinteilige Strukturen einer optimierten Ressourcenwirtschaftung entgegen.

Wettbewerbsbeschränkungen für kommunale Unternehmen – wie das Örtlichkeitsprinzip – verhindern jedoch auch, dass Einnahmerückgänge aufgrund sinkender Einwohnerzahlen durch Erschließung weiterer Marktsegmente kompensiert werden können [Schön und Mohajeri, 2010].

Der demografische Faktor „Alterung“ wird ebenfalls im Zusammenhang mit strukturellen Auswirkungen genannt, die die Wasserwirtschaft ebenso wie andere Industrie-
und Gewerbezweige betreffen [Londong et al., 2008]. Beim Facharbeitermangel handelt es sich um einen sich selbst verstärkenden Effekt der Binnenmigration.

Ökologische Auswirkungen

Durch den Bevölkerungsrückgang kann grundsätzlich von einer Verringerung der Gewässerbelastung ausgegangen werden.

Hinsichtlich der Bedeutung der zu erwartenden Zunahme an Gewässerbelastungen mit Medikamenten bzw. Medikamentenrückständen (demografischer Faktor Alterung) besteht noch Forschungsbedarf. Regelungen zur Begrenzung des Eintrags durch kommunales Abwasser bestehen derzeit noch nicht. [Hillenbrand et al., 2010]

5.4 Maßnahmen

Einen Überblick über Lösungsansätze für vom demografischen Wandel betroffene Gebiete gibt die der UBA-Studie [Hillenbrand et al., 2010] entnommene Abbildung 5.9.

Abb. 5.9: Überblick über Lösungsansätze für vom demografischen Wandel betroffene Gebiete [Hillenbrand et al., 2010]

5.4.1 Technische Maßnahmen

Anpassungsstrategie

- **Kläranlage**: Als klassische Anpassungsstrategie wird die Anschlusserweiterung an die Kläranlage betrieben.

Betriebliche Maßnahmen
Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfall- und Abwasserentsorgung in ländlichen Regionen in den neuen Bundesländern

 Beispiel ländlicher Raum: Verstärkter Geruchsbildung bei Teichkläranlagen (< 1000 Einwohner) oder Tauchkörperanlagen kann entgegengewirkt werden, indem das Gesamtreinigungsvolumen der Anlagen reduziert wird (Reduzierung Teichvolumen, Reduzierung Scheibentauchkörperflächen). Damit wird zusätzliches Regenwasserbehandlungsvolumen darstellbar.

- **Kanalbetrieb**: Häufigere Kanalspülungen, vermehrte Kanalinspektionen, Belüftung, Zugabe von Chemikalien, Einbau von Abluftfiltern.

Kosteneffiziente Weiternutzung

- **Kläranlage**: freie Kapazitäten nutzen für Co-Fermentation; Elimination von Arzneimitteln.

- **Kanal**: bedarfsorientierte Reinigung unter Einsatz von Hochdruck-Reinigung sowie mobiler statt stationärer Schwallspülung; Korrosionsbeständigkeit bei Sanierung herstellen; Kompatibilität von Anschlüssen und Verbindungen; gemeinsame Verantwortung für private und öffentliche Kanäle und Leitungen bei Inspektion und Sanierung; stärkere Trinkwassermarkierung; evtl. Fremdwasser“bezug“.

Umnutzung

- **Kläranlage**: Verfahrenstechnische Nutzungsänderung von Beckenvolumen.

- **Kanal**: Umwandlung von Misch- in Trennsysteme unter Verwendung von Druck- oder Vakuumentwässerung; erweiterte Nutzung von Leitungsgräben als Rigo- len/Pflanzraum/Kanalbauwerk; Querschnittsreduzierte Sanierung mit Wärmetauschern; Reserve-Kapazitäten in Mischsystemen für höhere Niederschläge, Speicher für Kanalpüllwasser, Kopplung mit anderen technischen Infrastruktur- netze, Stadtplanung mit Umnutzung statt Neuerschließung

Rückbau

- **Kanal**: Anpassen der Hydraulik (Querschnittsreduzierung, Rückbau bis Stilllegung; wobei die Reduzierung des Querschnitts bei Mischkanalisations ein Problem werden kann, wenn durch den „Klimawandel“ vermehrt auftretende Starkregenereignisse berücksichtigt werden müssen).

 Stilllegung bestehender Netze statt Sanierung, bei gleichzeitigem Aufbau dezentra- ler, insbesondere modularer Anlagen; Abkopplung von Regenwasser.

Kombinierte Maßnahmen

Umwidmung der Misch- und Schmutzwasserkanäle in Fremdwassergebieten zur Niederschlags- und Dränagewasserableitung, bei Neubau der Schmutzwasserkanalisation und/oder Aufbau dezentraler Lösungen; Teilstromtrennung (Schwarzwasser, Grauwasser); Abstimmung von Abschreibungsdauern zwischen Netz und An- schlussnehmern (insbesondere Gewerbe).

Innovative Verfahren

Neuartige Sanitärsysteme (NASS): Ressourcen orientierte, neuartige Systeme in der Siedlungswasserwirtschaft sind in [DWA, 2008] zusammengestellt. Das Schwarzwasser 2-Stoffstromsystem ist z. B. ein neuartiges Sanitärsystem mit Trennung von Toilettenwasser (Schwarzwasser) von allen anderen im Haushalt anfallen-
Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

Abb. 5.10: Schema für ein neuartiges Konzept zur Abwasserentsorgung im ländlichen Raum [Londong, 2008]

Wasserstoff auf Kläranlagen: Kläranlagen bieten die Möglichkeit zur Verknüpfung von Energie- und Abwasserinfrastruktur über die Wasserstofftechnologie. Abbildung 5.11 zeigt die entsprechenden verfahrenstechnischen Verknüpfungen und Komponenten einer wasserstoffbasierten Kläranlage.

Es lassen sich auf Kläranlagen zwei wesentliche Erzeugungsprozesse unterscheiden:

- Wasserstoff aus Klärgas
- Wasserstoff aus Elektrolyse.

Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

Für Kläranlagen im ländlichen Raum, die vom demografischen Wandel betroffen sind, bietet die Wasser-Elektrolyse-Technologie eine besondere innovative Möglichkeit, die nachstehend am Projekt Barth im mecklenburgisch-vorpommerschen Landkreis Nordvorpommern erläutert wird.

Beispiel Projekt Barth, Mecklenburg-Vorpommern

Diese Kläranlage war einerseits ausgelastet, hatte aber ein großes, nicht kanalisier-tes Einzugsgebiet mit vielen Kleinkläranlagen. Statt einer klassischen Vorgehensweise (Ausbau Kanalnetz und Erweiterung der Kläranlage), wurde ein neuer Weg beschritten.

Zum Abfangen dieser temporären Lastspitzen wird zusätzlich zu einer Luft-Grundlast Reinsauerstoff aus dem Elektrolyseur in die biologische Behandlungsanlage geführt. Dadurch ist die Anlage in der Lage, die temporären Belastungsspitzen ohne bauliche und/oder maschinentechnische Erweiterungen aufzunehmen. Das zudem als Strom-
Die DWA - Deutsche Vereinigung für Wasserwirtschaft, Abwasser, Abfall e.V. hat diesen Entwicklungen durch die Gründung der Arbeitsgruppe „wasserstoffbasierte Energiekonzepte“ im Hauptausschuss Abfall/Klärslamm Rechung getragen und führt die Entwicklung weiter.

5.4.2 Betriebswirtschaftliche Maßnahmen

Neben den beschriebenen Steigerungen der variablen Betriebskosten durch erhöhten Betriebsaufwand bedeutet die Konstanz der anlagenseitigen Fixkosten u. A. drastische Steigerungen der Kosten je veranlagten Nutzer.

Handlungsempfehlungen im Hinblick auf kommunale Planungen aus betriebswirtschaftlicher Sicht gibt Bellefontaine (2008):

- Flexiblere Planungen
- Einfachere Technik
 Unterschiedliche Lebensdauern von Investitionen (Bauwerke 40 bis 50 Jahre, Maschinentechnik 15 bis 20 Jahre, Elektrotechnik 10 Jahre) erfordern eine Überprüfung der technischen Lösungen. U. U. kann eine einfachere Bautechnik, Technik, auch wenn sie früher ersetzt werden muss, langfristig zu geringeren Kosten führen.
- Ansatz kürzerer Nutzungsdauern
 Die technisch mögliche Nutzungsdauer entspricht häufig nicht der betriebswirtschaftlichen Nutzungsdauer. Die Veranschlagung einer kürzeren Nutzungsdauer öffnet die Möglichkeit flexibler auf zukünftige Entwicklungen zu reagieren. Aus betriebswirtschaftlicher Sicht sollte mit folgenden durchschnittlichen Abschreibungsraten gearbeitet werden:
 Kläranlagen 15 bis 25 Jahre
 Sammler 30 bis max. 50 Jahre (im Durchschnitt höchstens 40 Jahre)
- Optimale Betriebsgröße
 zentrale, dezentrale Anlagen, Berücksichtigung der Mengenentwicklung (Schmutzwasser weniger, Niederschlagswasser evt. mehr)
- Sicherheitsreserven überdenken
 Je flexibler die Planung ausgerichtet ist, umso geringer sind die Sicherheitsreserven zu planen. Dem Risiko, dass die Reserven über den Planungshorizont nicht ausreichen, sind die Mehrkosten für zu große Reserven gegenüber zu stellen.
- Interkommunale Zusammenarbeit
Synergien durch interkommunale Zusammenarbeit: Vergabe von Dienstleistungsaufräten, Bündelung von Arbeiten, für die eine eigene Personalvorhaltung zu teuer ist, gemeinsamer Materialeinkauf.

- Finanzierungskonzeption

- Verursachergerechtes Entgeltsystem getrennt nach Schmutzwasser und Niederschlagswasser

Einmalige Beiträge für die erste Herstellung von Anlagen

Wiederkehrende Beiträge zur Abdeckung der verbleibenden fixen Kosten wie Abschreibungen, Zinsen und Personalkosten

Benutzungsgebühren zur Abgeltung der benutzungsabhängigen variablen Kosten.

Problematisch ist bei erforderlichen Investitionsmitteln, die direkt vom Nutzer aufzubringen sind (beispielsweise in Form von Beiträgen oder der Finanzierung von Kleinkläranlagen), dass sich in der Regel die Zinslast im privaten Bereich höher und die Kreditwürdigkeit niedriger darstellt als für die öffentliche Hand. Dem ist gegebenenfalls mit entsprechenden Finanzierungs- und Betreibermodellen entgegenzuwirken. [DWA, 2008]

Beispiel Betreibermodell (contracting model) [Becker et al., 2006]

Da die Trinkwasserversorgung über Hausbrunnen erfolgt, war die Akzeptanz der Bürger für das Membran-Belebungsverfahren mit seiner hohen Reinigungsleistung auch im Hinblick auf Hygiene groß.

Zwischen den Grundstückseigentümern und dem Lippeverband wurde ein Dienstleistungsvertrag abgeschlossen. Der Lippeverband verpflichtet sich, die Anlagen zu beschaffen und zu errichten sowie den Anlagenbetrieb für 10 Jahre zu übernehmen. Hierfür wird den Grundstückseigentümern vierteljährlich ein
Festbetrag in Rechnung gestellt, der sich aus Finanzierungskosten und Betriebskosten (außer Energie) zusammensetzt. Im Mittel lag der Festbetrag bei 950,00 €/a. Nach Ende der Vertragszeit gehen die Abwasseranlagen in das Eigentum der Grundstücksbesitzer über, es kann aber auch erneut ein Betreibervertrag abgeschlossen werden.

Eine erste Befragung der Bürger nach Inbetriebnahme der Anlagen ergab, dass sich die Akzeptanz vor allem darauf gründet, dass

- die Kosten für die Abwasserreinigung planbar waren und
- die Verantwortung für Wartung und Betrieb an einen Dritten abgegeben werden konnte.

5.4.3 Organisatorische/strukturelle Maßnahmen

Für Entsorger und Kommunen wird es entscheidend sein, sich frühzeitig auf die stattfindenden Veränderungen einzustellen, Stadtentwicklung sowie die Unternehmensstrategie aufeinander abzustimmen und eine langfristig orientierte, die sich verändernden Rahmenbedingungen berücksichtigende Investitionsplanung durchzuführen.

Beispiel Herzberger Wasser- und Abwasserzeckverband (Landkreis Elbe-Elster) aus [Mohajeri et al., 2006]:

konnten, welche die unterschiedlichen kommunalen Ausgangslagen in einem regional integrierten wasserwirtschaftlichen Konzept angemessen berücksichtigt.

Die Umsetzungen der Überlegungen stehen noch aus.

Die Kläranlagen- und Kanalnachbarschaften sind ein freiwilliger Zusammenschluss ohne besondere Rechtsform. Die Beteiligung ist unabhängig von der Mitgliedschaft in der DWA. Durch die Umweltministerien der Freistaaten Sachsen und Thüringen werden die Nachbarschaften anteilig mitfinanziert.

5.4.4 Ergebnis der Befragung Europäischer Wasservereinigungen

Vorhersagen für die Schweiz zeigen die nächsten 2 Jahrzehnte, dass nur für 2 kleine Gebirgskantone (von insgesamt 26 Kantonen) ein Rückgang der ständigen Wohnbevölkerung von geschätzten -1.9% (Uri) und -5.3% (Glarus) erwartet wird. Der Kanton
Glarus ist daran, sich u. a. im Hinblick auf diese Entwicklung durch Gemeindefusionen (von 30 auf 3 bis im nächsten Jahr) neu zu organisieren. In beiden Kantonen werden oft Wohnungen für die ständigen Einwohner in Ferienwohnungen umfunktionierte; auch entwickelt sich der Tourismus dort immer noch weiter (v. a. Uri). Dies entschärft allfällige Finanzierungsprobleme der Wasserinfrastrukturen.

In Anlage 5 ist die Auswertung der EWA Umfrage zusammengestellt.

5.5 Synopse

Als zentrales Element bestimmt aufgrund der rechtlichen Vorgaben das Teilsystem Gewässer (Grundwasser und oberirdische Gewässer) maßgeblich die Konzeption der Siedlungsentwässerung (vgl. Europäische Wasserrahmenrichtlinie, [EU-WRRL, 2000]). Diese gibt als Immissionsstandard den „guten Zustand“ der Gewässer vor, aus dem die Emissionsanforderungen abgeleitet werden.

Die Aufgaben der Abwasserbeseitigung entwickelten sich damit über

- das schadlose Ableiten von Regenwasser (Überflutungsschutz),
- Sicherstellung der Hygiene zum
- Gewässerschutz (guter Zustand Grundwasser und Oberflächengewässer),
 weitere Schutzziele sind z. B. Trinkwassergewinnung, Baden, Fischen.

Heute herrscht Konsens, dass Abwasseranlagen in gering verdichteten Gebieten nicht nach gleichen Grundsätzen und Anforderungen wie in städtischen Gebieten geplant, gebaut und betrieben werden sollten, da ansonsten die spezifischen Kosten unverhältnismäßig hoch werden.

Im ländlichen Raum (neue Länder) kann von einem Anschluss an die öffentliche Kanalisation mit zentraler Abwasserbehandlung von rund 50% (Gemeindegrößen unter 1.000 E) bis 90% ausgegangen werden (Gemeindegrößen bis 20.000 E).

Die Umsetzung der Abwasserbeseitigung liegt im, vom Grundgesetz garantierten, Selbstverwaltungsrecht der Gemeinden (Freiheit der Organisation). Es haben sich im ländlichen Raum dezentrale, kommunale Strukturen entwickelt.

Betroffen vom demografischen Wandel sind vor allem netzgebundene Ver- und Entsorgungssysteme und damit Systeme mit hohen Fixkosten und langen Nutzungsdauern. Die Auswirkungen von Schrumpfung sind hier:

- Unterauslastung von Anlagen
- Ineffizienz der Nutzung und des Betriebes von Einrichtungen und Anlagen
- steigende spezifische Kosten bei Konstanz der Festkosten (pro Nutzer, pro Nutzungseinheit).

Unerwünschte Effekte aufgrund des geringeren Schmutzwasseranfalls im technischen Bereich lassen sich grundsätzlich betriebstechnisch bewältigen, bedeuten aber vermehrte Betriebsaufwendungen bzw. investive Maßnahmen. Generell sind funktionale Umnutzungen vorhandener Volumina denkbar. Einen Kostenanstieg kann man auch durch technische Innovationen begrenzen.
Die ökonomische Auswirkung wird als sehr hoch eingeschätzt. Aus den zu erwartenden Entwicklungen wird ein hoher Handlungsdruck entstehen, der auch als Treiber für Effizienzverbesserungen und Innovationen wirken wird.

Die gegenwärtig vorhandene dezentrale und regional zum Teil sehr kleinteilige Organisationsstruktur ist gerade in schrumpfenden Regionen oftmals ein Hemmnis bei der Entwicklung tragfähiger Ver- und Entsorgungsstrukturen. Dies bezieht sich sowohl auf die geringe Größe der Entsorgungsbetriebe (Fachpersonal) als auf administrative Schwierigkeiten, sobald die Grenzen von Gebietskörperschaften überschritten werden.

Durch den Bevölkerungsrückgang kann grundsätzlich von einer Verringerung der Gewässerbelastung ausgegangen werden.

Hinsichtlich der Bedeutung der zu erwartenden Zunahme an Gewässerbelastungen mit Medikamenten bzw. Medikamentenrückständen (demografischer Faktor Alterung) besteht noch Forschungsbedarf. Regelungen zur Begrenzung des Eintrags durch kommunales Abwasser bestehen derzeit noch nicht.

6 Stand der politischen Debatte in Bund, Ländern und Kommunen

6.1 Die Relevanz der technischen Infrastruktur und die fachpolitische Debatte

Das öffentliche Bewusstsein für die Bedeutung der technischen Infrastruktur ist in ganz Deutschland im Laufe der Zeit gestiegen. Dies gilt besonders für Ostdeutschland und ist wesentlich durch die steigende Evidenz des demografischen Wandels gefördert worden. Im Zuge der Deutschen Wiedervereinigung waren Milliarden Euro in die Systeme der technischen Reproduktion Ostdeutschlands geflossen, was allein schon deshalb notwendig war, weil in der DDR diese Systeme bei weitem nicht angemessen erhalten worden waren. Aber diese Mittel waren in den 1990er Jahren in aller Regel noch im Bewusstsein einer Gesellschaft kalkuliert und eingesetzt worden, die auf Wachstum beruhte, auf ökonomischem ebenso wie auf demografischem Wachstum. Der bundespolitisch vorgegebene und landespolitisch wie in den Kommunen zumeist verinnerlichte Vorrang für Investitionen erschwerte die Berücksichtigung ökologischer Belange wie etwa den Schutz der Landschaft und den sparsamen Umgang mit Ressourcen.

Noch das Programm Stadtumbau Ost 2001, die wichtigste Reaktion einer europäischen Regierung überhaupt auf das Stocken des demografischen Wachstums, hat die Folgen des Schrumpfens vor allem auf die Problematik des Wohnungsleerstands reduziert. Die Siedlungsstruktur wurde zwar wieder zu einem Diskussionsthema wie lange nicht mehr, dies betraf indessen vor allem die Kritik der Suburbanisierung und die breite Durchsetzung des Ziels, die urbanen Zentren zu stärken. Allerdings hat
das Programm Stadtumbau Ost den unterirdischen Stadtumbau nur als zweitrangig angesehen. Auf der anderen Seite hat gerade die breite Erfahrung des Umbaus der ostdeutschen Städte und deren intensive Diskussion im Laufe der Zeit das Bewusstsein für die Relevanz der technischen Infrastruktur wachsen lassen, Relevanz, die sich auf unterschiedliche Aspekte erstreckt:

- Relevanz für die Unterhaltskosten des Wohnungsbestandes, was die Bewohner wie die Eigentümer betrifft. In Regionen mit ungünstigen Ausgangsbedingungen etwa wegen einer geringen Bevölkerungsdichte und unterdurchschnittlichem Einkommensniveau werden die Bedeutung wie die Gefährdung der erreichten Versorgung früher offenbar als woanders.

- Relevanz für die langfristigen Reproduktionskosten einer Kommune oder einer Region im Hinblick auf die öffentlichen Haushalte, die durch den Kostendruck weniger in der Lage sind, das bisherige Versorgungsniveau zu halten.

- Relevanz für die langfristigen Reproduktionskosten einer Kommune oder einer Region im Hinblick auf die herkömmlich verstandene Standortkonkurrenz. Die Kosten der technischen Infrastruktur sind je nach Branche ein wichtiges Kriterium für Ansiedlungsentscheidungen.

- Relevanz für den Beitrag einer Kommune oder Region für einen positiven Beitrag zum Umweltschutz und der Energieeffizienz in Zeiten wachsenden Bewusstseins für den Klimawandel, wobei hier Erfolge eher zu den weniger öffentlichswirksamen Fakten zählen.

Die Sichtbarkeit der Leistungen, der Kosten und überhaupt der Relevanz der technischen Infrastruktur hat sich in den letzten Jahren durch sich häufende Berichte in den Medien erhöht, die auch ganz normale Bürger erreichen und ansprechen. Am eindrucksvollsten berichtete die FAZ im März 2010 über die krassen Unterschiede zwischen der Höhe der kommunalen Gebühren in der Bundesrepublik, ja innerhalb eines Bundeslandes. Im Mittelpunkt standen Müllabfuhr und Abwasser.

Für 60 Liter Müll wöchentlich müssen in Gelsenkirchen jährlich 120 Euro, in Bielefeld 467 entrichtet werden. Die Abwassergebühren für einen Vier-Personen-Haushalt kosteten 2008 in Karlsruhe für das ganze Jahr 226 Euro, in Potsdam hingegen 786 Euro. Eindrucksvoll ist besonders das Beispiel einer Großbäckerei. In Heuchelheim bezahlt eine typische Großbäckerei jährlich knapp 52.000 Euro an Abwassergebühren, im ebenfalls hessischen Modautal hingegen etwas über 142.000 Euro. Letzteres Unternehmen muss, um diesen Unterschied zu finanzieren, für weit über 100 000 Euro mehr als die mittelhessische Konkurrenz verkaufen.

Besonders wichtige Beiträge zur Diskussion um die politischen Folgen des demografischen Wandels auf die technische Infrastruktur entstanden seit Mitte des vergangenen Jahrzehnts durch eine Reihe von Expertenstudien, die größtenteils auf Forschungsaufträge des Bundes und der Länder zurückgehen oder direkt von Mitarbeitern öffentlicher Institutionen verfasst wurden.1 Einen wichtigen Impuls für die Fort-

1 Auf die Auseinandersetzung mit einer weiteren wichtigen Veränderung der Rahmenbedingungen für die Infrastruktur und Daseinsvorsorge insgesamt kann hier nur verweisen werden: Die mittlerweile vererbte Auseinandersetzung um die Privatisierung der Dienstleistungen, die bis dahin gemeinhin von öffentlichen Institutionen erbracht wurden. Vgl. Einig 2008

Einen umfassenden Beitrag zur Stärkung des Politikfeldes der technischen Infrastruktur leistete 2006 Peter Jakubowski vom BBR. Er forderte:

- Es müsse durch bewusstes Agenda Setting die Sichtbarkeit des Zusammenhanges zwischen Infrastruktur und demografischem Wandel mit dem entsprechenden Problembewusstsein erhöht werden.
- Es müssen nicht nur neuen Finanzierungswege eingeführt werden, sondern auch eine komplexere Kalkulation mitsamt dem Prinzip der Kostenwahrheit.
Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

- Neue, flexible Technologien seien ebenso vonnöten wie neue Betreibermodelle.

6.2 Gesetzes- und Beschlusslage im Bund bzw. der MKRO

Schließlich setzt der Beschluss auf die Auswertung weiterer Erfahrungen sowie auf eine Weiterentwicklung der einschlägigen Förderprogramme (MORO) auch im Bereich der Bau- sowie der Agrarminister.

6.3 Stand der politischen Debatte in den Ländern

6.3.1 Thüringen

Die regelmäßig in Thüringen geforderte Gemeinde- und Gebietsreform, welche ein drohendes Auseinanderfallen der Leistungsfähigkeit der kommunalen Gebietskörperschaften zumindest mildern könnte, ist derzeit nicht geplant. Die aktuelle Landesregierung aus CDU und SPD hat ihre Position bis voraussichtlich 2014 wie folgt festgeschrieben:

Abfallwirtschaft

Derzeit erarbeiten die kommunalen Akteure Abfallwirtschaftskonzepte. Der Prozess verläuft dabei in unterschiedlichen Geschwindigkeiten. Während der Abfallwirtschaftszweckverband Ostthüringen, bestehend aus dem Landkreis Greiz und der
Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

Eine politische Initiative der Landespolitik ist derzeit im Bereich der Abfallwirtschaft nur im Bereich einer Aufgabenerweiterung der kommunalen Akteure zu erwarten. Die Regierungsparteien konstatieren im laufenden Koalitionsvertrag:

„Die Strukturen der regionalen Zweckverbände im Bereich der Abfallwirtschaft haben sich bewährt. Diese Strukturen sind leistungsfähig und können zusätzliche Aufgaben übernehmen wie z.B. die Überwachung und Rekultivierung von Altdenponien. CDU und SPD begrüßen Initiativen zur Gründung eines gemeinsamen Abfallzweckverbandes in Mittelthüringen, wie er in den anderen Thüringer Planungsregionen auch existiert."

Weiterhin heißt es:

Wasserversorgung

Der derzeit gültige Landesentwicklungsplan weist einem weiteren Ausbau der Fernwasserversorgung den Weg. Fernwasserversorgungssysteme tragen demnach zunehmend zur Erhöhung der Versorgungssicherheit bei und sichern oder ergänzen die Wasserversorgung vor allem dort, wo es aus ökonomischen, ökologischen oder sozialen Belangen erforderlich bzw. zweckmäßig sei. Dazu sollen Fernwassersysteme weiter bedarfsge recht ausgebaut werden. [Vgl. LEP Thür., 2004, S. 52]

Mit Blick auf die demografische Entwicklung ist eine Senkung des Wasserbedarfs in Thüringen deutlich sichtbar. Davon wird insbesondere die Fernwasserversorgungen in Ostthüringen und Südthüringen betroffen sein. Während beispielsweise Mittelthüringen langfristig optimal versorgt werden kann, ist hier die Ursache in der bereits erfolgten Außerbetriebnahme einer Trinkwasseraufbereitungsanlage in der Region (Tambach-Dietharz) zu sehen. In Ostthüringen wird durch die Außerbetriebnahme der TWA Dörendorf ab dem Jahr 2011 dem Bedarfsgang in Ostthüringen jedoch auf maximal 67% / 82% im Jahr 2040 absinken. Im südlichen Thüringen werden allerdings durch die Netzstruktur abzuleitende Herausforderungen sichtbar, da eine Anpassung der Fernwasserkapazität an den zurückgehenden Fernwasserbedarf bei der Fernwasserversorgung Südthüringen nur durch eine Reduzierung der Aufbereitungskapazität der TWA Schönbrunn möglich, was allerdings aus wirtschaftlicher Sicht nicht sinnvoll sei. [Vgl. Trinkwasser Thür., 2009, S. 49.]

Insgesamt kann jedoch festgestellt werden, dass die Trinkwasserversorgung in Thüringen derzeit als gesichert angesehen wird. Dennoch gibt es einzelne Verwaltungsgemeinschaften mit quantitativen oder qualitativen Problemen – von Mengenproblemen betroffen sind ca. 25.000 Einwohner (1% der Bevölkerung) und von qualitativen Schwierigkeiten ca. 37.000 Einwohner (1,5% der Bevölkerung). Die Lösung dieser Probleme ist aus wasserwirtschaftlicher bzw. technischer Sicht stets möglich, jedoch bestehen meist finanzielle Zwänge. Insbesondere bei nur wenigen Hundert betroffenen Einwohnern ist der erforderliche hohe Investitionsaufwand schwer zu begründen. [Vgl. Trinkwasser Thür., 2009, S. 49]

Abwasserentsorgung

Neben dem Bevölkerungs- und damit auch Nutzerrückgang wird die Situation zusätzlich dadurch erschwert, dass das öffentliche Kanalnetz in Thüringen nach statistischen Erhebungen im Jahr 2007 zwar eine Gesamtlänge von fast 14.000 Kilometern aufweist, ein Teil der vorhandenen Kanäle aber nicht den allgemein anerkannten Regeln der Technik entspricht und noch zu sanieren ist. Der Anschlussgrad der Thü-

Mittlerweile verfügen die gemeindlichen Gebiete in Thüringen mit mehr als 2.000 Einwohnern über kommunale Kläranlagen und sind überwiegend erschlossen. Ein Förderschwerpunkt wird deshalb künftig auch die Errichtung kleinerer kommunaler Kläranlagen und die Erhöhung des Anschlussgrades an bestehende kommunale Kläranlagen sein, vor allem durch Anschluss vorhandener großer Teilortskanalisationen, aus denen bisher hohe Schmutzfrachten in die Gewässer eingeleitet wurden. [Vgl. Abwasser Thür., 2008, S.22]

Abb 6.1: Anschlussgrad der Bevölkerung an kommunale Abwasserbehandlungsanlagen Thüringen

6.3.2 Sachsen
Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

Wanderungssaldo mit 46938 Zuzügen zu 53.519 Fortzügen negativ. [Vgl. SLS – Wanderungen, 2010]

Mit einer mittleren Bevölkerungsdichte von 226 EW/km² entspricht Sachsen in etwa dem Bundesschnitt von 231 EW/km². Die Bevölkerung Sachsen verteilt sich regional sehr unterschiedlich. Während die drei sächsischen Großstädte Chemnitz, Dresden und Leipzig mit ca. 1/3 der Gesamtbevölkerung jeweils Einwohnerdichten von teils deutlich über 1000 EW/km² verzeichnen, sind die Landkreise äußerst unterschiedlich zu bewerten. Während im Landkreis Zwickau, bedingt durch die alten industriellen Kerngebiete eine Einwohnerdichte von 364 EW/km² konstatiert werden kann, liegt diese im eher ländlich geprägten Landkreis Nordsachsen nur bei 103 EW/km² ab. [Vgl. SLS – EW-Dichte, 2010]

Auch in der Einwohnerentwicklung bis 2020 ergibt sich ein gemischtes Bild. Während Dresden und Leipzig Bevölkerungsgewinne von bis zu 7% erwarten dürften, werden Chemnitz und die 10 Landkreise insgesamt weiter eine Abnahme ihrer Bevölkerung einkalkulieren müssen. Während sich die Umlandgemeinden von Dresden und Leipzig vergleichsweise stabil entwickeln sollen, wird insbesondere der sächsische Osten unter enormen Bevölkerungsrückgängen zu leiden haben. Für die Stadt Hoyerswerda wird beispielsweise ein Rückgang von -28,2% (-32,1 % im pessimistischen Szenario) vorhergesagt. In Summe ergibt sich für den Prognosezeitraum 2020 ein Bevölkerungsrückgang von 6,0% (pessimistisch 9,3%) angegeben. [Vgl. SLS – Prognose, 2007]

Zwei Ausführungen des Koalitionsvertrages der sächsischen Regierungsparteien geben Hinweise darauf, auf welchen Weg sich der Freistaat Sachsen in Bezug auf die Abnahme bzw. Veränderung der Bevölkerung(ssstruktur) begeben wird:

Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

Abfallwirtschaft

Die sächsische Landesplanung fokussiert derzeit (noch) auf die Sicherstellung der Entsorgungskapazitäten und einer bürgerfreundlichen Ausgestaltung der Entsorgungsmöglichkeiten [Vgl. LEP Sachs., 2003, S. 89].

Auch die sächsische Abfallwirtschaftsplanung geht in diese Richtung. So wird als dessen Ziel die „nachhaltige Schonung der natürlichen Ressourcen sowie die Sicherung der umweltverträglichen und nachhaltigen Beseitigung von Abfällen.“ definiert. [Vgl. Abfall Sachs., 2009, S.9f]

Wasserversorgung

auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

bundesystemen wird eine optimale Bereitstellungs- und Versorgungssicherheit für die öffentliche Trinkwasserversorgung gesehen. [Vgl. LEP Sachs., 2003, S. 87f.]

Als dauerhafte Zielstellung gilt die Versorgung von Bevölkerung und Gewerbe mit Trinkwasser in ausreichender Menge, mit erforderlicher Qualität und zu sozialverträglichen Gebühren/Preisen, welche durch die gegenwärtig 76 Aufgabenträger im Freistaat Sachsen wahrgenommen werden soll. Neben den lokalen Versorgern bestehen mit dem Zweckverband Fernwasserversorgung Südsachsen (FWS), der Fernwasserversorgung Elbaue-Ostharz GmbH (FEO) und dem Zweckver band Fernwasserversorgung Sdier drei Fernwasserversorgungssysteme, die über die örtlichen Aufgaben träger ca. 40 % der Bevölkerung mit Trinkwasser versorgen. [Vgl. Struktur Wasser Sachs.]

Abwasserentsorgung

Der Schwerpunkt beim Ausbau der abwassertechnischen Infrastruktur in Sachsen lag in den zurückliegenden Jahren auf der Umsetzung der Anforderungen der EU-Richtlinie Kommunalabwasser, insbesondere in den Verdichtungsgebieten ab 2.000 Einwohnern. Bei einem gegenwärtigen Anschlussgrad an öffentliche Abwasserbehandlungsanlagen von ca. 85 % ist in den kommenden Jahren noch für ca. 600.000 Einwohner die Abwasserentsorgung, sofern sie noch nicht die rechtlichen Anforderungen erfüllt, an den Stand der Technik anzupassen [Vgl. Abwasser Sachs., 2008, S. 14].

Als ein weiterer Grund, neben der Umsetzung europäischer Vorgaben, in ländlichen Gebieten bzw. in Streusiedlungen auf dezentrale Lösungen zu setzen, wird die Möglichkeit der Reduzierung der finanziellen Belastung der Bürger genannt. Dezentralen Lösungen, die eine ordnungsgemäße Abwasserentsorgung sichern, ist daher eine größere Bedeutung beizumessen. [Vgl. LEP Sachs., 2003, S.89].

6.3.3 Sachsen-Anhalt

Mit einer Bevölkerungsdichte von 115 Personen/km² gehört Sachsen-Anhalt zu den eher ländlich geprägten Bundesländern. Während die Zentren Magdeburg und Halle jeweils für Großstädte übliche Werte >1.000 E/km² aufweisen, ist die drittgrößte Stadt Dessau-Roßlau bereits mit ca. 370 E/km² eher dünn besiedelt. Besonders geringe Bevölkerungsdichten weisen der Altmarkkreis Salzwedel mit ca. 40 E/km² und der Landkreis Stendal mit ca. 50 E/km² auf. Ähnlich niedrige Werte mit <100 E/km² sind darüber hinaus im Landkreis Börde, dem LK Jerichower Land und im Landkreis Wittenberg zu finden. [Vgl. SLSA, 2010]

In der nahen Zukunft ist eine Besserung der Entwicklung nicht in Sicht. Auf der Grundlage der aktuellen 5. Regionalisierten Bevölkerungsprognose ist flächig mit weiteren Bevölkerungsrückgängen zu rechnen. Mit Prognosezeitraum bis zum Jahr 2025 kann allein die Landeshauptstadt Magdeburg ihre Bevölkerung annähernd halten. Hier wird lediglich eine Abnahme von 1,9% vorhergesagt. Mit der zweitgeringsten Abnahme hat das zweite große Zentrum, die Stadt Halle, mit immerhin noch 10,0% Bevölkerungsrückgang beinahe einen Spitzenwert zu verzeichnen. Von den elf Landkreisen werden neun einen weiteren Rückgang ihrer Bevölkerung von >20% verkaufen müssen. Spitzenreiter hier ist der Landkreis Mansfeld-Südharz mit 27,7%. Weniger als 20% Rückgang können der Halle umgebende Saalekreis mit 17,9% und der Landkreis Börde mit 19,4% für sich erwarten. Somit liegen nur der Saalekreis

Abfallwirtschaft

Als Zielstellungen werden vorrangig benannt:

Sowie:

Wasserversorgung

Die Politik betont gleichzeitig den Erhalt der Bezahlbarkeit der Wasserversorgung. Gerade in Blick auf die teils sehr niedrige Bevölkerungsdichte ist dies verständlich. So heißt es im aktuellen Koalitionsvertrag

Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

Geht es nach dem zuständigen Fachminister sollen in Zukunft auch die Versorgungsträger in ihrer Anzahl reduziert werden. Mit Blick auf die Stabilität der Preise spricht sich Minister Aikens für eine Kostendämpfung bei Abwasser und Trinkwasser durch schlankere Strukturen aus und kündigt dazu entsprechende Maßnahmen an. [Vgl. PM Aikens, 2010]

Abwasserentsorgung

Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

Abb.2: Entwicklung der Abwasserbeseitigung in Sachsen-Anhalt – 1990 - 2008

[Vgl. Agrar Presseprotal, 2010].

6.3.4 Brandenburg

Das Land Brandenburg gehört mit einer durchschnittlichen Bevölkerungsdichte von rund 86 Einwohnern pro km² nach wie vor zu den vergleichsweise dünn besiedelten, überwiegend ländlich geprägten Bundesländern Deutschlands. Demgegenüber beträgt der Bundesdurchschnitt etwa 230 Einwohner je km². Während im Umland von Berlin, im engeren Verflechtungsraum, die Bevölkerungsdichte weit über dem Landesdurchschnitt (z.B. Potsdam 805 E/km²) liegt, ist diese im äußeren Entwicklungsraum Brandenburgs – insbesondere im nördlichen Teil des Landes - weitaus geringer (z.B. Prignitz: 40 E/km², Ostprignitz- Ruppin 42 E/km² und Uckermark 44 E/km²).

[Abwasser BRB, 2009, S. 15].

Der Blick in die Zukunft fällt äußerst gemischt aus. Auf Grundlage der aktuellen Bevölkerungsprognose wird die Bevölkerungszahl im Land Brandenburg bis zum Jahr 2030 gegenüber 2006 um ca. 354 000 Personen (knapp 14 Prozent) zurückgehen und einen Stand von 2,194 Mio. Einwohnern erreichen. [Vgl. ASBB – Bevölkerungsprognose,2008, S.11] Vorrangig ist das natürliche negative Saldo ver-
Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

Das Land steht vor der Herausforderung die Versorgung einer wachsenden Bevölkerung im Landesinneren sicherzustellen, während das übrige Landesgebiet sehr starken Schrumpfungsprozessen ausgesetzt ist. Um diese Aufgabe zu meistern, wurde in der brandenburgischen Staatskanzlei eine Koordinierungsstelle eingerichtet. Dabei werden auch die hier zu betrachtenden Strukturen der Wasserver- und -entsorgung als auch der Abfallbehandlung betrachtet. Für den Bereich Wasserver- und -entsorgung heißt es zum Beispiel im 2. Bericht der Landesregierung zum demografischen Wandel:

Abfallwirtschaft:

Ebenso ist der laufende Koalitionsvertrag zwischen SPD und Die Linke zu interpretieren, der konstatiert: „Wir werden die nachhaltige Abfallpolitik fortführen. Das Depo nieschließungsprogramm wird weiter umgesetzt. Entstandene Abfälle sollen ökono-
Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

„Um die Kosten einer ordnungsgemäßen, schadlosen und gemeinwohlerträglichen Abfallentsorgung sowohl für jeden Bürger als auch für die Wirtschaft in Grenzen zu halten, sind solche abfallwirtschaftlichen Lösungen zu suchen, die bei Einhaltung der Umweltstandards zu den geringsten Aufwendungen führen. Von besonderer Bedeutung für das Flächenland Brandenburg ist eine dezentral konzipierte Abfallwirtschaft, die den Vorzug einer hohen Flexibilität hat und zu einer Verminderung der Transportaufwendungen und -belastungen bei gleichzeitig besserer Akzeptanz, z. B. für die Bioabfallverwertung, führt. Dort, wo aus wirtschaftlichen und technischen Gründen eine dezentrale Lösung nicht zweckmäßig ist, wie z. B. bei der Nutzung von Deponiekapazitäten, sind zur Kostenbegrenzung körperschaftsübergreifende Kooperationen anzustreben.“ [Abfallplan BRB, 2000, S.391f.].

Wasserversorgung

In Brandenburg wird Trinkwasser fast ausschließlich aus dem Grundwasser, vielfach mit Anteilen von Uferfiltrat gewonnen. Talsperren und Oberflächenwasserdirekttanlagen werden nicht für die Trinkwasserversorgung genutzt. [Vgl. Wasser BRB, 2009, S.18].

Abwasserentsorgung

Grundsätzlich soll die Ortserschließung bei der Abwasserentsorgung in Orten mit mehr als 2.000 Einwohnern auf der Grundlage der EU-Kommunalabwasserrahmenrichtlinie fortgesetzt werden. In Orten mit weniger als 2.000 Einwohnern müssen verursacher- und grundwasserschutzgerechte dezentrale Kleinlösungen gesucht werden. [Vgl. Demografie BRB, Werkstattbericht, 2005, S.77f].

6.3.5 Mecklenburg-Vorpommern

Die Bevölkerungsdichte ist in Mecklenburg-Vorpommern mit ca. 73 E/km² gering. Während die kreisfreien Städte Einwohnerdichten von 743 E/km², Schwerin, bis 1.504 E/km², Stralsund, aufweisen, beträgt die Bevölkerungsdichte im Landkreis Müritz 39 E/km², im Landkreis Mecklenburg-Strelitz 40 E/km². Auch die übrigen Landkreise sind eher dünn besiedelt. Mit Ausnahmen des LK Bad Doberan im Rostocker Umland mit 88 E/km² und LK Rügen mit 73 E/km² erreicht kein Landkreis eine mittlere Bevölkerungsdichte von mehr als 60 E/km². [Vgl. Abfall MV, 2008, S.12].

Trotz dieser Abweichungen bleibt die Tendenz allerdings stabil. Gegensteuern wird unvermeidbar bleiben. Der an der Universität Rostock eingerichtete Lehrstuhl für Empirische Sozialforschung und Demographie zeigt die Bereitschaft sich mit den Fragestellungen intensiv zu beschäftigen. Allerdings beschränkt sich der Forschungsgegenstand dort vor allem mit den Folgen einer alternden Gesellschaft für die medizinische Versorgung und der Arbeitswelt. Technische Versorgungsstrukturen werden, zumindest öffentlichkeitswirksam, nicht betrachtet.

Abfallwirtschaft

Mit Beginn der laufenden Legislaturperiode einigten sich die neuen Regierungspartner aus SPD und CDU im Bereich der Abfallwirtschaft auf nachfolgende Position:

Die in Mecklenburg-Vorpommern anfallenden Abfälle sollen vorrangig in Entsorgungsanlagen innerhalb des Landes behandelt, gelagert und im Bedarfsfall deponiert werden, um die damit einhergehende Wertschöpfung zu sichern, daran gebundene Arbeitsplätze zu schaffen bzw. zu erhalten und zur Minimierung der Umweltbelastung durch wegfallende Langstreckentransporte von Abfällen beizutragen. Gleichwohl wird auf die bisherige Andienungspflicht von Abfällen zur Beseitigung in Entsorgungsanlagen innerhalb des Landes Mecklenburg-Vorpommern verzichtet. Der erreichte Anlagenbestand lässt es zu, dass sich die Anlagenbetreiber dem Wettbewerb länd-
übergreifend stellen und dabei ihren Standortvorteil nutzen. Für die Siedlungsabfallentsorgung bestehen langfristige Verträge zwischen öE und Anlagenbetreibern, so dass durch diese Öffnung, keine Gefährdung der Entsorgungssicherheit gesehen wird. [Vgl. Abfall MV, 2008, S.9f.].

Wasserversorgung

Auf Nachfrage beim zuständigen Ministerium wird auf die wirtschaftliche Analyse Flussgebietseinheit Warnow/Peene aus dem Jahr 2008 verwiesen. Obgleich die betrachtete Gebiet nur ca. 2/3 der Landesfläche ausmacht, wird bei den Landesbehörden von einer Vergleichbarkeit zum gesamten Landesgebiet ausgegangen. Eine Aufarbeitung der Datenlage für das ganze Land Mecklenburg-Vorpommern ist derzeit nicht beabsichtigt.
Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

Abwasserentsorgung

Um die Bürgerinnen und Bürger des Landes bei der Anpassung ihrer unzureichenden Kleinkläranlagen finanziell zu unterstützen, stehen aus dem ELER einschließlich der nationalen Kofinanzierung 28 Mio. Euro zur Verfügung. Mit diesen Mitteln können

6.4 Stand der politischen Debatte auf kommunaler Ebene

Herangehensweise

Als „unterste“ Ebene sind die Kommunen und ihre Einrichtungen besonders stark von den Auswirkungen des demografischen Wandels betroffen, denn sie halten die Mehrzahl der infrastrukturellen Einrichtungen für die Menschen vor, sie sind über einwohnerbezogene Finanzzuweisungssysteme abhängig von den in ihrer Gemeinde lebenden Bürgern und haben gleichzeitig wenig Einfluss auf die wirtschaftlich bedingten Zu- oder Wegzüge der Einwohner. [KWI, 2006]

Um dennoch einen Blick auf den Diskussionsstand der kommunalen Akteure zu erhalten, wurde ein Referenzkreis ausgewählt. Der Thüringische Landkreis Saale-Orla erscheint geeignet, um an dessen Beispiel die Diskussionen um die Auswirkungen des demografischen Wandels mit Blick auf die technische Infrastruktur zu verdeutlichen.

Grundlage der Ausführungen zur Situation im Saale-Orla Kreis ist ein Interview mit dem Landrat des Kreises, Frank Roßner, welches am 28. September 2010 in dessen

Auswahlgründe

Mit derzeit 88.632 Einwohnern auf 1.148 km² Fläche und der daraus resultierenden Bevölkerungsdichte von 77 Einwohnern/km² gehört der Saale-Orla Kreis zu den eher dünn besiedelten Gebieten. Der Kreis unterteilt sich in 65 Gemeinden, wovon die größte Gemeinde die Stadt Pößneck mit aktuell 12.935 Einwohnern darstellt. Die kleinste eigenständige Gemeinde ist der Ort Solkwitz mit aktuell 64 Einwohnern. Ins-
Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

Bewusstsein über den Demografischen Wandel

Ein möglicher Lösungsansatz könnte laut Roßner eine Veränderung der Förderpolitik des Landes sein. Eine stärkere Steuerung von Landesseite könnte lokale Akteure zur Kooperation untereinander animieren, in dem bestimmte Förderprogramme an beispielsweise eine Bevölkerungsmindestzahl gekoppelt werden, welche Kommunen durch Kooperation erreichen können. Unerwähnt, aber dennoch möglich ist bei einer solchen Umstellung, dass zwischen die lokalen Fronten das Land auf abstrakter
Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

Ebene eintreten könnte und somit den lokalen Akteuren einen äußeren Zwang als Kommunikationsmittel zur Verfügung stellen könnte. Offen ist natürlich dabei, ob die Länder ein politisches Interesse haben, sich in solche Konfliktlinien zu begeben.

Abfallwirtschaft

Laut Landrat, der auch Vorsitzender des Abfallzweckverbandes ist, besteht ein Planungsvorlauf für max. 20 Jahre. In diesen Planungen wurden die zu erwartenden Schrumpfungsprozesse bereits bedacht, so dass größere Herausforderungen und ggf. Hilfe von außen auf diesem Gebiet eher nicht erwartet bzw. nötig werden.

Wasserversorgung / Abwasserentsorgung

Es wird eingeschätzt, dass gerade diese Kleinteiligkeit auf Dauer nicht zu halten sein wird, zumal Strategien, wie mit Schrumpfungsprozessen umzugehen ist, derzeit,

Dass dezentrale Anlagen allerdings unverzichtbar sind, wird geteilt. Gerade durch die Topographie wird ein flächendeckender Anschluss an zentrale Systeme nicht möglich sein. Das wird sich auch in Zukunft nicht gravierend ändern, so dass solche Lösungen akzeptiert werden.

Zu Fragen staatlicher Unterstützung wird moniert, dass neue Unterstützungsformen erst zur Verfügung standen, als die wesentlichen Investitionen bereits getätigt wurden.

6.5 Synopse

Das öffentliche Bewusstsein für die Bedeutung der technischen Infrastruktur ist in ganz Deutschland im Laufe der Zeit gestiegen. Dies gilt besonders für Ostdeutschland und ist wesentlich durch die steigende Evidenz des demografischen Wandels gefördert worden. Obwohl das Programm Stadtumbau Ost den unterirdischen Stadtumbau nur als zweitrangig angesehen hat, hat gerade die breite Erfahrung des Umbaus der ostdeutschen Städte und deren intensive Diskussion im Laufe der Zeit das Bewusstsein für die Relevanz der technischen Infrastruktur wachsen lassen.
Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

In zwei Bundesländern soll das Instrument Demografiecheck genutzt werden:

• Mit einem Demografiecheck sollen unter anderem relevante Rechtsvorschriften und kostenintensive Investitionsmaßnahmen unter dem Gesichtspunkt der langfristigen Tragfähigkeit geprüft werden. (Sachsen)

• Mit Blick auf die demografische Entwicklung hat die Landesregierung Brandenburg einen „Demografiecheck“ eingeführt. Damit sollen Investitionen auf ihre langfristige Wirkung überprüft und sichergestellt werden, dass öffentliche Mittel zielgenau im Bedarf verausgabt werden. Darüber hinaus wurden auch Regionalkonferenzen in allen Landkreisen durch das zuständige Fachministerium und die brandenburgische Investitionsbank durchgeführt, um die lokalen Akteure für die sich durch die Demografie ergebenden Veränderungen zu sensibilisieren. Zielstellung der Landespolitik ist, den unterschiedlichen Bevölkerungs- und Wirtschaftsentwicklungen durch regionale Lösungsansätze zu begegnen. Die lokalen Aufgabenträger sollen diese bereits heute entwickeln, um aktiv den demografischen Wandel zu begleiten und nicht durch ihn getrieben zu werden. (Brandenburg).

Zu den einzelnen Sektoren wird in den Bundesländern folgendes ausgeführt:

Abfallwirtschaft

• Im Bereich Abfallwirtschaft will das Land Thüringen auch in Zukunft seine moderierende Rolle wahrnehmen. Ziel ist es, die in Thüringen vorhandenen Abfallbehandlungs- und Deponiekapazitäten sinnvoll auszulasten, um die Gebührenzahler nicht unverhältnismäßig zu belasten. (Thüringen)

• Bezahlablere Abfallentsorgungsgebühren erfordern optimale Getrennthaltungs-, Sammel- und Handlings systeme sowie darauf abgestimmte Investitionen und Anlagenkonzeptionen. Dadurch wird die Notwendigkeit einer regional über greifenden Kooperation der öffentlich-rechtlichen Entsorgungsunternehmen zur Planung, Vorbereitung und Umsetzung der neuen Abfallwirtschaftsstrukturen weiter wachsen. (Sachsen-Anhalt)

• In der Abfallwirtschaft spielen demografische Trends nur eine geringe Rolle, da das Siedlungsabfallaufkommen nur einen geringen Teil des Gesamt abfallaufkommens ausmacht. Durch geänderte rechtliche Rahmenbedingungen wird die Verwertungsrate weiter steigen. Die Entsorgungsinfrastruktur kann relativ leicht und ohne betriebswirtschaftliche Probleme den Schwankungen des Abfallaufkommens angepasst werden. (Brandenburg)

• Auf die bisherige Andienungs pflicht von Abfällen zur Beseitigung in Entsorgungsanlagen innerhalb des Landes Mecklenburg-Vorpommern wird nach Abfallwirtschaftsplan 2008 verzichtet. Der erreichte Anlagenbestand lässt es zu, dass sich die Anlagenbetreiber dem Wettbewerb länderübergreifend stellen.
und dabei ihren Standortvorteil nutzen. Für die Siedlungsabfallsentsorgung be-
stehen langfristige Verträge zwischen öffentlich-rechtlichen Einrichtungen und
Anlagenbetreibern, so dass durch diese Öffnung, keine Gefährdung der Ent-
sorgungssicherheit gesehen wird. (Mecklenburg-Vorpommern)

Wasserwirtschaft:

• Die Lösung von quantitativen oder qualitativen Problemen ist aus wasserwirt-
schaftlicher bzw. technischer Sicht stets möglich, jedoch bestehen meist fi-
nanzielle Zwänge. Insbesondere bei nur wenigen Hundert betroffenen Ein-
wohnern ist der erforderliche hohe Investitionsaufwand schwer zu begründen.
(Thüringen)

• Bei der bedarfsgerechten quantitativen und qualitativen Sicherstellung der
 Wasserversorgung sind die Aspekte der effektiven Nutzung der Wasserdar-
gebote und Wasserversorgungsanlagen, der Versorgungssicherheit und der
 Wirtschaftlichkeit bei sozialverträglichen Gebühren und Entgelten von heraus-
ragender Bedeutung. Dabei sind die demografischen und wirtschaftlichen
 Entwicklungen in den Versorgungsgebieten ebenso wie Vorkehrungen zu
 Auswirkungen bzw. Folgeerscheinungen des Klimawandels als auch von Ext-
remereignissen für strategische Planungen einer nachhaltigen öffentlichen
 Wasserversorgung zu berücksichtigen. (Sachsen)

• Die EU-Wasserrahmenrichtlinie (WRRL) soll „eins zu eins“ mit möglichst ge-
 ringem Verwaltungs- und Kostenaufwand für alle Beteiligten umgesetzt wer-
 den. Die Zielsetzung der WRRL ist insbesondere durch Kooperation von Ver-
 waltung, Landwirtschaft und Gewerbe zu erreichen. Eine flächendeckende
 Versorgung der Bevölkerung mit qualitativ hochwertigem Trinkwasser ist zu
 sichern. Dabei sind zunehmend marktwirtschaftliche Instrumente einzusetzen.
(Sachsen-Anhalt)

• Kooperationen und Fusionen von Aufgabenträgern werden als geeignete In-
 strumente angesehen, um auch bei einem drastischen Bevölkerungsrückgang
 sozial angemessene und wirtschaftlich stabile Strukturen in der Wasserwirt-
schaft zu gewährleisten Eine frühzeitige Steuerung durch das Land ist nötig,
da die Kommunen bzw. die Aufgabenträger entscheiden, mit welchen Lösun-
gen schließlich gearbeitet wird. (Brandenburg)

• Die EU-WRRL soll in Abstimmung mit dem Bund unter strenger Kosten-
 und Nutzenbetrachtung umgesetzt werden. Bei der Umsetzung soll eng mit Land-
eigentümern und Betroffenen zusammenarbeitet werden. Freiwillige vertragli-
 che Vereinbarungen haben Vorrang vor ordnungsrechtlichen Maßnahmen.
(Mecklenburg-Vorpommern)

Abwasserwirtschaft

• Ein Förderschwerpunkt wird auch künftig die Errichtung kleinerer kommunaler
 Kläranlagen und die Erhöhung des Anschlussgrades an bestehende kommu-
nale Kläranlagen sein. In zersiedelten ländlichen Gebieten Thüringens, wo
 zentrale Abwasserbehandlungsanlagen oft nicht wirtschaftlich zu errichten
 bzw. im Hinblick auf die Bevölkerungsentwicklung nicht dauerhaft auszulasten
 sind, werden Kleinkläranlagen nach Stand der Technik als Ergänzung bzw. als
 eine Alternative zu zentralen Entsorgungssystemen angesehen. (Thüringen)

• Jede Anlagenplanung ist auf die jeweils aktuelle Bevölkerungsprognose hin
 auszulegen, unter Berücksichtigung des spezifischen Abwasseranfalls. Ent-
 sprechend sind Investitionen auf den zu erwartenden Bedarf zu beschränken
und zu hinterfragen, ob der Aufgabenträger den Unterhalt der zu errichtenden Anlage für die gesamte Lebensdauer leisten kann. (Sachsen)

- Maßnahmen der abwassertechnischen Erstverschließung in dauerhaft dezentral zu entwässernden Bereichen sollen vorwiegend mit mechanisch-biologischen Kläranlagen erfolgen. Bestehende und dauerhaft betriebene Kläranlagen sind an die Anforderungen der Technik anzupassen. (Sachsen-Anhalt)

- Bei abwassertechnischen Erschließungen sind im ländlichen Raum seitens der abwasserbeauftragten Gemeinden, Zweckverbände und Ämter eine sorgfältige und umfassende Projektvorbereitung und -planung erforderlich. Aus der Vielzahl möglicher Varianten und Verfahren ist die - für den Einzelfall nach technischen, ökonomischen und ökologischen Kriterien abgeleitete - günstigste Abwasserlösung auszuwählen und im aktuellen Abwasserbeseitigungskonzept (ABK) auszuweisen und umzusetzen. (Brandenburg)

- Im Bereich der Abwasserentsorgung soll die Entwicklung der Siedlungsstrukturen beachtet und die Förderung von dezentralen Kläranlagen und Kleinkläranlagen im ländlichen Raum verstärkt werden. (Mecklenburg-Vorpommern)

Auf kommunaler Ebene ist die Notwendigkeit, sich dem demografischen Wandel zu stellen, erkannt worden. Allerdings führen Verharrungstendenzen, Furcht vor Verlust an Eigenständigkeit bzw. Gestaltungsmöglichkeiten, lokale Konfliktilinien aber auch die Investitionslinien bereits umgesetzter Projekte dazu, dass nicht in jedem Fall mit derselben Geschwindigkeit auf sich wandelnden Rahmenbedingungen reagiert werden kann.

Während die Abfallwirtschaft grundsätzlich als lösbar eingeschätzt wird, bilden die Bereiche Wasserversorgung bzw. Abwasserentsorgung den Schwerpunkt der Diskussion. Dies deckt sich auch mit den vorangestellten Berichten aus den einzelnen Bundesländern.

7 Identifikation von Defiziten in den vorhandenen Ver- und Entsorgungsstrukturen

7.1 Einführung

Schrumpfungsprozesse sind für immer mehr Gemeinden im ländlichen Raum Realität geworden. Nach Angaben des BBR sind in neuen Bundesländern 94,5% (Stand 2005) der Gemeinden im ländlichen Raum von der demografischen Entwicklung betroffen [BBSR, 2009]. Neben starken Bevölkerungsverlusten zeichnen sich periphere ländliche Räume im Osten durch eine starke Alterung aus. Schon jetzt beträgt hier das Durchschnittsalter 43,8 Jahre und soll bis 2025 auf 51,4 Jahre ansteigen. Im gleichen Zeitraum soll die durchschnittliche Bevölkerungszahl auf 43 Einwohner pro km² sinken.

Das heutige Dorf wird oft nur als Noch-nicht-Stadt betrachtet und entsprechende städtische Lebensqualitäten und Leistungen (Verkehrsmittel, Energie / Wasserversorgung, Kulturangebot etc.) werden erwartet. Es stellt sich die Frage, ob und wie das Angebot von Leistungen der Daseinvorsorge nach heutigem Standard in dünn besiedelten peripheren ländlichen Räumen mit vertretbaren gesellschaftlichen Kosten zu tragen ist.

Die übergeordnete Frage, ob eine ländliche Lebensweise erhalten werden soll und kann und wie diese vor dem Hintergrund von gleichwertigen Lebensverhältnissen zu definieren ist, ist zu diskutieren. Hier ist der Bund in der Verantwortung.

- Bereich, welcher staatlichen Standards unterliegt (z.B. Notfallmedizin, Bildung, Sicherheit)
- Bereich, welcher für unterschiedliche Siedlungsstrukturen unterschiedlich definiert werden kann; hierhin gehören ÖPNV, Wasserversorgung, Abwasser- und Abfallentsorgung, Kultureinrichtungen.

Fazit:
Die grundgesetzlich festgeschriebenen gleichwertigen Lebensverhältnisse sollten
über Standards erreicht werden, die die unterschiedlichen Voraussetzungen berücksichtigen. D.h., nicht durch die Anwendung der gleichen Technik sondern mit der Anwendung von in der Gesamtsicht von Vor- und Nachteilen des Lebens im ländlichen Raum sinnvoll betreib- und finanzierbaren technischen Systemen in geeigneten Organisationsformen.

7.2 Technik

Technische Maßnahmen

Die Auswertung der Studien und die Erfahrungen der Betreiber zeigen deutlich, dass es zur Rettung der existierenden Systeme eine große Palette an technischen Möglichkeiten gibt. Ihnen gemein ist, dass die Systeme im Grunde aufrecht erhalten werden können jedoch mit steigenden Kosten je Nutzer.

Echte Systemwechsel scheitern an fehlendem Fachwissen und einschränkenden gesetzlichen Regelungen. Da viele dezentrale Anlagen in den neuen Bundesländern noch an den Stand der Technik anzupassen sind, bietet sich gerade hier eine der seltenen Möglichkeiten innovative Infrastruktursysteme zu erproben. Hierzu werden im nächsten Kapitel Handlungsempfehlungen gegeben.

Prognosen

Die in den Kapiteln 3 bis 5 beschriebenen Lösungsansätze in technische Maßnahmen umzusetzen ist für die betroffene Kommune oder den Verband nicht ohne weite- res möglich, da die Auswirkungen des demografischen Wandels auf die technische Infrastruktur im Einzelfall von evtl. überlagerten Rahmenbedingungen geprägt wird. Hierzu gehören unter anderem im Bereich der Wasserwirtschaft
Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

- niedriger spezifischer Trinkwasserverbrauch
- geringe Siedlungsdichte
- wasser-/abwasserintensive Industrie- oder Gewerbebetriebe
- saisonale Schwankungen zum Beispiel durch Tourismus und Landwirtschaft (Erntezeiten),
in der Abfallwirtschaft zählen dazu
- die Wirtschaftsentwicklung
- technische Entwicklungen
- die Getrennterfassungsquoten.

Um im Einzelfall alle genannten Einflussfaktoren berücksichtigen zu können und einen systematischen Ansatz für Handlungen der Ver- und Entsorgungsunternehmen vor Ort zu erhalten, wird die Erarbeitung eines Clustermodells empfohlen (siehe auch Kapitel Handlungsempfehlungen, Clustermodell im Bereich Abwasser). Auf Basis von clusterspezifischen Beurteilungskriterien soll jedes Einzugsgebiet in dieses Clustermodell eingruppiert werden können und daraus grundsätzliche Empfehlungen für das einzelfallspezifische Handeln vor Ort abgeleitet werden.

7.3 Qualitätsziele

Zunächst ist die Festlegung von vom Betroffenen akzeptierten Qualitätszielen problematisch. Die Strukturen der politischen Willenbildung weisen aufgrund von Interessenskonflikten der zahlreichen Akteure in der Wasser- und Abfallwirtschaft bereits bei der Definition von Qualitätszielen eine starke Fragmentierung der Interessenswahrnehmung auf. Hinzu kommt die bewusste und gewollte Trennung zwischen der politischen Willensbildung zur Definition von Qualitätszielen und der Definition, Bewertung und Steuerung von Handlungszielen.

![Abbildung 7.1: Abortgrube und Misthaufen neben dem Trinkwasserbrunnen](Bischofsberger, 1987)

Da heute wesentliche Qualitätsziele auf einer bürgerfernen EU-Ebene bestimmt werden, verbleibt dem Bund und insbesondere den Ländern lediglich die Ausgestaltung und die Überwachung. Insbesondere bei den ökologischen Qualitätszielen bestehen mit Bezug auf den ländlichen Raum Defizite sowohl in der Ausgestaltung als auch in der Überwachung.

Als Defizit wird also erkannt, dass die Umsetzung der EU-Kommunalabwasser-richtlinie nicht hinreichend die Belange der EU-Wasserrahmenrichtlinie aufnimmt. Hier bietet sich eine Chance, sowohl ein sinnvolles Qualitätsziel zu erreichen, als auch ortsspezifische Lösungen umzusetzen. Zumindest eine Priorisierung von Maßnahmen müsste an messbaren ökologischen Qualitätszielen erfolgen.

7.4 Organisation

In der Realität bestehen beträchtliche Defizite in der Abstimmung zwischen den Kommunen und den zuständigen Ressorts. Zur Sicherung und Stabilisierung der interkommunalen Zusammenarbeit sind nicht nur informelle offenen Formen sondern
auswirkungen des demografischen wandels auf die technische infrastruktur von abfallentsorgung, wasserversorgung und abwasserbeseitigung in ländlichen regionen in den neuen bundesländern

In den existierenden organisationen der Trinkwasserversorgung und Abwasser- und Abfallentsorgung ist ein ausgeprägtes Beharrungsvermögen festzustellen. Dies macht Veränderungen schwieriger. Auch in der Fachliteratur (z.B. [BBSR, 2009]) wird auf die Gefahr hingewiesen, dass in Fragen über entscheidende Aspekte der Daseinsvorsorge einflussreiche, gut organisierte Interessensträger in erster Linie auf ihren Selbsterhalt ausgerichtet sind und nicht auf die Bedürfnisse der Bevölkerung.

7.5 Finanzierung

Auf die Möglichkeiten angepasster Finanzierungskonzepte wurde in den vorangegangen Kapiteln hingewiesen. Als Defizit ist die noch geringe Umsetzung der in der Literatur zu findenden Vorschläge zu identifizieren.

Ein weiteres Problem könnte sein, dass die Erhöhung des Fixkostenanteils an Gebühren und Beiträgen als nicht vereinbar mit den Zielen des sparsamen Umgangs
mit Wasser und der Reduzierung des Müllaufkommens wirken könnte. Hier wird als Defizit die Erklärung der Zusammenhänge (auch hier oft ortsspezifisch) erkannt.

Eine Änderung der Tarifstruktur wird allerdings nur eine geringe Auswirkung auf die Belastung der Bürger insgesamt haben, da die Art der Gebührenerschließung keinen Einfluss auf die abzudeckenden Kosten hat. Da sie aber letztlich hilft, die finanzielle Auswirkung langfristiger Investitionsentscheidungen transparent zu machen und so zu nachhaltigen Investitionsentscheidungen führt, wird als wesentliches Defizit der mangelnde Mut identifiziert sich aktiv und öffentlich mit dem Thema auseinander zu setzen.

7.6 Integrale Betrachtung von Technik, Organisation und Finanzierung

Wesentliches Defizit ist die mangelnde Erkenntnis, dass in allen betrachteten Sektoren systemisches Denken und Handeln wenig ausgeprägt ist. Zum einen wird der Zusammenhang zwischen Technik, Betrieb und Finanzierung nicht ausreichend gewürdigt, zum anderen mangelt es an Sektor übergreifenden Konzepten.

Gerade die als Reaktion auf den demografischen Wandel häufig angesprochenen dezentralen Verfahrenstechniken bedürfen auch organisatorischer Innovationen, um deren ordnungsgemäßen Betrieb und die entsprechenden Qualitätsziele dauerhaft zu gewährleisten [Londong und Hillenbrand, 2010].

Da bestehende Regeln w. z. B. die KAG der Bundesländer nicht hinterfragt werden und es keine Lobby gibt, die sich für strukturelle Änderungen einsetzt, bleibt als Defizit, dass die Zulässigkeit der Einbeziehung von Maßnahmen auf privaten Grundstücken oder das kommunale Einzugsgebiet überschreitende Flächen vor dem Hintergrund der Kostenminimierung nicht in die Überlegungen einbezogen wird, bzw. einbezogen werden kann. Daher ist die Ausweitung der Systemgrenzen für Investitionen auch dann nicht möglich, wenn sie dem Gesamtsystem dient.

Gerade im ländlichen Raum der Mittelgebirge, wo in der Regel ausreichende Schleppspannungen auch für den Transport von zerkleinertem Küchenabfall vorhanden sind, ist ein zu behebendes Defizit, dass trotz Rückgangs der Bevölkerungszahl und steigender Kosten für die Abfallsammlung auch im Einzelfall keine Möglichkeit besteht, derartige Lösungen umzusetzen. Dies ist bedauerlich, da die Co-Fermente dann nicht mehr (energieintensiv) über die Straße zur Kläranlage gelangen sondern

Da derartige Sektor übergreifende Lösungen meist komplexer, in jedem Fall aber neu sind, wird als Defizit einerseits das Beharrungsvermögen von Verantwortlichen für konventionelle Systeme, anderseits mangelndes Wissen und fehlender behördlicher Rückhalt identifiziert. Kleinteilige Organisationsstrukturen haben sich auch aus diesen Gründen oft als hemmend für übergreifende Konzepte erwiesen. Es mangelt an Hilfestellungen und Anreizen für die Organisation von größeren Einheiten und auch für die Einführung neuer Formen interkommunaler Zusammenarbeit.

8 Handlungsempfehlungen

Die folgenden Handlungsempfehlungen sollen Bund, Ländern und Kommunen helfen, Leitlinien zu bestimmen, wie mit den Folgen der demografischen Entwicklung für die Infrastruktur in den Bereichen Abfall, Trinkwasser und Abwasser umgegangen werden soll, welche Möglichkeiten es gibt, gegenzusteuern, sowie welche Prioritäten hierbei zu setzen sind.

Vorausgeschickt seien einige grundsätzliche Erkenntnisse und Empfehlungen:

- Alle Planungen müssen einem „Demografiecheck“ unterzogen werden. Hierzu sind Beurteilungskriterien notwendig, die für die hier betrachteten Sektoren Abfall, Trinkwasser und Abwasser noch nicht aufgestellt wurden. Es ist daher
zu empfehlen, gemeinsam mit betroffenen Kommunen und Ländern Kriterien erarbeiten zu lassen. Ein bundesweites Monitoring ist notwendig, um die die Verbreitung des Instrumentes Demografiecheck zu optimieren.

Wir empfehlen, eine Studie in Auftrag zu geben, die auf Erfahrungen mit Um siedlungen infolge von Kohleabbau und Talsperrenbau aufbaut (wohl wissend, dass hier Infrastruktur bezogene finanzielle Erwägungen nur eine geringe Rolle spielten), Möglichkeiten und Chancen einer geordneten Siedlungspolitik bei extremen Schrumpfungsbedingungen zu beleuchten. Diese sollte interdisziplinär ausgerichtet sein und neben technischen und finanziellen Aspekten die Sozialverträglichkeit, Generationengerechtigkeit und Langfristigkeit der Folgen von siedlungspolitischen Entscheidungen mit bedenken.
Zusätzlich ist zu diskutieren, inwieweit neue Lebensweisen, die auf andere Maßstäbe der Lebensqualität setzen, in solchen Räumen zur Entfaltung gelangen könnten. Dies kann wiederum nur im Rahmen einer breit angelegten, öffentlichen Diskussion geschehen, für die indessen konkrete Vorschläge für eine andere Gewährleitung der Daseinsvorsorge von fachlicher Seite vorgelegt werden müssten.

Konkrete technisch-organisatorische Mindeststandards sind zu definieren. Hierbei ist auch die Finanzierung (inklusive die Kostenträgerschaft) der Maßnahmen sowie deren Herstellung und Aufrechterhaltung zu klären.

• Last but not least scheint es notwendig zu sein, die Kommunen jetzt mit Nachdruck auf den Ernst der Entwicklung hinzuweisen, um diese dazu zu bringen, Handlungskonzepte aufzustellen und umzusetzen. Hierzu ist es zunächst notwendig, die Verantwortlichen vor Ort (z.B. Bürgermeister) zu erreichen (siehe Handlungsempfehlung 1) um deren Problembewusstsein zu fördern und Verharrungstendenzen entgegen zu wirken.

Um die Leistungsfähigkeit der Wasser- und Abfallwirtschaft im ländlichen Raum zu erhöhen, damit sie die Qualitätsziele effizienter erreichen können, bedarf es

- einerseits Hilfestellungen (Beratung, Handreichung für Bürgermeister...)
- anderseits Anreizen oder Druck (obligatorisches Benchmarking, bundesweites Monitoring, Sanktionierung von Fehlern,...).

Für die unmittelbare kommunale Ebene fehlen Handreichung für

- Zusammenschlüsse von Zweckverbänden, Gemeinden
- Kommunale Nachbarschaftshilfe (z.B. über Fachverbände organisiert wie die DWA Kläranlagen- und Kanalnachbarschaften)
- Interkommunale Kooperation
- Strategische Partnerschaften zwischen öffentlichen und privaten Unternehmen.

Diese sollen mit Unterstützung von Bund und Ländern in Zusammenarbeit mit ausgewählten Kommunen erarbeitet werden.

Handlungsempfehlungen Abfallwirtschaft

Aufgrund der heute schon zumindest auf Kreisebene organisierten Abfallentsorgung, treten viele der in den Sektoren Trink- und Abwasser identifizierten Probleme nicht oder abgeschwächt auf. Die nicht leitungsgebundene Infrastruktur mit einem Trans-
Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

Ansätze für eine Diskussion in Sektor Abfall werden gesehen bei:

- Der Einführung von Andienungspflichten für SeRo im Siedlungsabfallbereich
- Der Förderung von Rückbau zur qualitativen Verwertung bei Abriss und Umbau von Gebäuden
- Bei der Förderung der Eigenkompostierung bei geringer Siedlungsdichte, falls keine etablierten zentralen Anlagen vorhanden sind
- Die Untersuchung einer Dezentralisierung der Bioabfallbehandlung.

Handlungsempfehlungen Trinkwasserversorgung

Die Trinkwasserversorgung ist auch in vom demografischen Wandel besonders betroffenen Gebieten sicherzustellen. Wenn in Einzelfällen auf dezentrale Versorgung zurückgegriffen werden muss, ist auch dieser Service inkl. der Überwachung zentral sicherzustellen.

Aufgrund der langen Abschreibungszeiten von Maßnahmen der Wasserversorgung ist besonderes Augenmerk auf Investitionsmaßnahmen zu legen. Der Wasserbedarf hängt einerseits von der Bevölkerungsentwicklung ab, anderseits von deren Verbrauchsverhalten. Die Tendenzen zu weiterem Wasser sparen sind nur schwer abzuschätzen. Es ist nicht wahrscheinlich, dass der mittlere Tagesbedarf unter 70 l/(E·d) sinken wird.

Es wird empfohlen, Kleinstunternehmen im ländlichen Raum Hilfestellung bei deren Aufgabenerfüllung und Organisationsoptimierung zu geben. Eine Zusammenarbeit mit Abwasserzweckverbänden wäre zu untersuchen, insbesondere dann, wenn diese das bei zu großen Leitungsquerschnitten im Trinkwassernetz notwendige Austauschwasser (Spülwasser) gezielt und planmäßig zur Reinigung der Abwasserkanäle einsetzen könnten.

Handlungsempfehlungen Abwasserentsorgung

Noch nicht in den Clustern direkt erfasst ist ein weiterer, aus dem demografischen Wandel resultierender Einflussfaktor auf die Abwasserbehandlung, die Überalterung der Bevölkerung. Mit der Überalterung muss von einem steigenden Arzneimittelverbrauch ausgegangen werden, der je nach Medikament erhebliche Auswirkungen auf das Abwasser und in Folge auf die Umwelt haben kann. Hier sind spezifische technische Maßnahmen erforderlich, die zwar den Umgang mit Abwasser als Ganzes betreffen, aber in Gebieten mit Überalterung einen besonders starken Einfluss haben können.
Kennzeichen des in Anlage 2 in ersten Grundzügen vorgestellten und weiter zu entwickelnden Clustermodells ist, dass jedes Einzugsgebiet in diese Clusterung eingeordnet werden kann. Von besonderer Bedeutung ist dabei eine Einschätzung der zukünftigen Entwicklung dahingehend, ob die spezifische Einordnung in ein Cluster auch dauerhaft von Bestand ist oder ob sich nach momentanen Erkenntnissen eine Verschiebung in ein anderes Cluster ergeben wird. Im letzten Fall sind die Ansätze des prognostizierten Clusters zugrunde zu legen.

Für jedes Cluster ist zum einen der Handlungsbedarf für den Betreiber des Abwasserwerksystems aufgelistet (hier sind bei der Weiterentwicklung des Clustermodells vertiefende Angaben zu machen), zum anderen werden wo notwendig und sinnvoll politische Handlungsempfehlungen gegeben.

Im Rahmen eines vorlaufenden „Demografichecks“ muss jeder Anlagenbetreiber erarbeiten bzw. erarbeiten lassen, ob die Clusterzuordnung von Dauer sein wird oder sich voraussichtlich eine Entwicklung hin zu einem anderen Cluster ergeben wird.

Grundsätzlich müssen Betreiber der Abwasseranlagen unabhängig von der Clusterzuordnung nachstehende Punkte beachten:

- Ganzheitliche, politische Grenzen überschreitende, innovative Ingenieurlustungen sind notwendig (zum Beispiel dezentrale Abwasserbehandlung, NASS).
- Bei der vorzeitigen Außerbetriebnahme von Anlagenteilen aufgrund von Belastungsrückgang sind Sonderabschreibungen notwendig, die zu erheblichen Gebührenbelastungen führen können. Hier könnte Abhilfe geschaffen werden, indem zum Beispiel auf die Rückzahlung von Investitionskostenschäden verzichtet wird. Sollten bei noch geplanten Maßnahmen Unsicherheiten bezüglich der demografischen Entwicklung bestehen, müssen Bauwerke und Maschinentechnik mit kürzeren Lebenszyklen (also kürzeren Abschreibungszeiten) und entsprechend geringerem Qualitätsstandard in die Untersuchungen einbezogen werden.

Neben den in Anlage 2 aufgelisteten politischen Handlungsempfehlungen werden folgende Empfehlungen ausgesprochen:

- Für die Anpassung an die demografische Entwicklung ist die von derartigen Interessenskonflikten unbefahmte Berücksichtigung dezentraler Abwasseranlagen von großer Bedeutung. Dezentrale Abwasseranlagen wie zum Beispiel Kleinkläranlagen wurden über Jahrzehnte nicht eingesetzt, weil Planung, Bau und Betrieb in Eigenverantwortung vom Grundstücksbesitzer durchgeführt wurden. Daher kam es flächendeckend zu erheblichen Mängeln und Qualitätsverlusten, die letztlich die gesamte dezentrale Abwasserentsorgung immer wieder in Frage gestellt haben und auch heute wieder in Frage stellen. Zudem entsteht zunehmend ein Konfliktpotenzial nach dem „Aschenputtelprinzip“: wenn sich die dezentrale Abwasserbehandlung für den Bürger lohnt, drängt er auf Übertragung der Abwasserbeseitigungspflicht, andernfalls besteht er (zum Teil auf dem Klageweg) auf Anschluss an das Kanalnetz und auch der Abwasserbeseitigungspflichtige handelt oft nach ähnlichen Grundsätzen. Daher wird empfohlen, auch die Verantwortung für dezentrale Abwasseranlagen wie Kleinkläranlagen in die Verantwortung

- Als wesentliche Kriterien zur Beurteilung von Standards sind die gesetzlich festgeschriebenen Ziele heranzuziehen. Hier wird für den ländlichen Raum vorgeschlagen, sich zumindest bei der Priorisierung von Maßnahmen auf
 - Hygiene,
 - Gewässerschutz (guter Gewässerzustand, EG-Wasserrahmenrichtlinie) und
 - Bodenschutz
zu beschränken und konsequent das Immissionsprinzip bei der Überwachung anzuwenden. Hierzu bedarf es einer neuen Strategie, die vom Bund mit den Ländern erarbeitet werden sollte.

- Geeignete technische, organisatorische und finanztechnische Lösungen ergeben sich aus diesen Zielen in Abhängigkeit der örtlichen Situation und der zu erwartenden Entwicklung. Da letztere dynamisch verläuft, wird vorgeschlagen, das im Rahmen dieser Studie entwickelte dynamische Clustermodell nach der vorgeschlagenen Weiterentwicklung anzuwenden.

- In Fällen, in denen heute ein (kostenrelevanter) Handlungsbedarf besteht, aber aus der sich ändernden Clusterzuordnung dieser Handlungsbedarf wegen der demografischen Entwicklung langfristig entfällt, sollte genehmigungsrechtlich die Möglichkeit einer befristeten Duldung („Sanierungserlaubnis“) des Istzustandes nach Vorlage entsprechender Genehmigungsunterlagen ermöglicht werden.

- Viele Entscheidungen für insgesamt wirtschaftliche und innovative Lösungen (zum Beispiel Neuartige Sanitätssysteme (NASS), dezentrale Kläranlagen) schei- tern oftmals am Interessenskonflikt zwischen dem einzelnen Gebührenschuldner und der Solidargemeinschaft der Gebührenzahler. Hier wäre eine generelle Zuständigkeit des Abwasserbeseitigungspflichtigen (Kommune, Verband, Unternehmen) generell auch auf den Privatgrundstücken oder sogar bis in die Häuser entsprechend der Trinkwasser- oder Gasversorgung sinnvoll.

Die hier beschriebenen Handlungsempfehlungen sind zusammenfassend in Anlage 3 in tabellarischer Form enthalten.

9 Zusammenfassung

Zielsetzung der vorliegenden Studie ist es strategische Überlegungen anzustellen und Handlungsempfehlungen zum Umgang mit den Auswirkungen des demografischen Wandels auf die technische Infrastruktur in ländlichen Regionen in den neuen Bundesländern zu geben.

Basis hierfür ist die Auswertung des gegenwärtigen Forschungs- und Wissensstandes und publizierter Lösungsansätze. Für die vom demografischen Wandel besonders betroffenen Gemeinden und Regionen sollen Lösungs- und Gestaltungsmöglichkeiten bei der Modernisierung, Umstrukturierung und/oder Neuorganisierung ihrer Aufgaben im Bereich der Daseinsvorsorge angeboten werden. Es ist darzulegen, welchen Handlungsspielraum sie benötigen, um eine nachhaltige Infrastrukturerwicklung auf kommunaler Ebene sicherzustellen.

Die Systemanalyse beschränkt sich auf die Bereiche Abfallentsorgung, Wasserver- und Abwasserentsorgung.

Betrachtet wurden primär die Bundesländer Brandenburg, Mecklenburg-Vorpommern, Sachsen, Sachsen-Anhalt und Thüringen.

Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserentsorgung in ländlichen Regionen in den neuen Bundesländern

In der Abfallwirtschaft spielen demografische Trends nur eine geringe Rolle,

...wegen der hohen Fixkosten und langen Nutzungsdauern der Anlagen. Die Auswirkungen von Schrumpfung sind hier:

- Unterauslastung von Anlagen

Ansätze für eine Diskussion in Sektor Abfall werden gesehen bei

- **der Einführung von Andienungspflichten für Sekundärrohstoffe im Siedlungsabfallbereich:**
 Bei zum Teil erheblich schwankenden Sekundärrohstoffpreisen sollte verhindert werden, dass private Entsorger die öffentlich-rechtlichen Entsorger bei guten Preisen aus dem Markt drängen und die wenig profitable Entsorgung bei geringen Erlösen wieder von den öffentlich-rechtlichen Entsorger zu tragen ist.

- **der Förderung von Rückbau zur qualitativen Verwertung bei Abriss und Umbau von Gebäuden:**

- **der Förderung der Eigenkompostierung bei geringer Siedlungsdichte, falls keine etablierten zentralen Anlagen vorhanden sind (Dezentralisierung der Bioabfallbehandlung).**

- **der gleichwertigen Förderung der Co-Vergärung von nachwachsenden Rohstoffen (NawaRo) zusammen mit speziellen Abfallstoffen (Fäkalschlamm aus Kleinkläranlagen und Schwarzwasser aus Neuartigen Sanitärkonzepten):**
 Bisher fällt der NawaRo-Bonus weg, wenn auch Abfallstoffe mitvergärt werden. Eine Änderung dieser Regelung für die genannten Abfälle (Fäkalschlamm und Schwarzwasser) könnte die Einführung innovativer Konzepte im ländlichen Raum erleichtern und dient einer besseren Auslastung von Vergärungs- und Faulungsanlagen

Betroffen vom demografischen Wandel sind vor allem die netzgebundenen Wasserver- und Abwasserentsorgungssysteme ...
Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

- Ineffizienz der Nutzung und des Betriebes von Einrichtungen und Anlagen
- steigende spezifische Kosten bei Konstanz der Festkosten (pro Nutzer, pro Nutzungseinheit).

Einflüsse wie saisonale Schwankungen durch Tourismus oder Erntezeiten können neben dem demografischen Wandel von Bedeutung sein und damit zusätzliche Auswirkungen auf Auslastung, technische Funktion und Kosten der technischen Infrastruktursysteme haben und den Faktor „demografischer Wandel“ überlagern. Zudem können sich die Faktoren gegenseitig beeinflussen und verstärken.

Die zentrale Trinkwasserversorgung muss auch im vom demografischen Wandel besonders betroffenen ländlichen Raum ohne Qualitätseinbußen sichergestellt werden,

Als Maßnahmen aus unternehmerischer Perspektive werden in verschiedenen Studien vorgeschlagen:

- Betriebswirtschaftliche Maßnahmen, die auf die Steigerung der betrieblichen Effizienz abzielen, wie zum Beispiel systematische Überprüfung der Investitionsplanung hinsichtlich zukünftiger Verbrauchsfehler, Personalabbau, Erschließung neuer Versorgungsgebiete, Verringerung der Wasserverluste im Netz.

- Veränderung der Organisationsstruktur, wie zum Beispiel Outsourcing einschließlich Ausschreibung der technischen und oder kaufmännischen Betriebsführung, regionale sowie überregionale Kooperation kommunaler Unternehmen, Fusion mit privaten Unternehmen.

- Veränderung des politisch-rechtlichen Rahmens.

Aufgrund der langen Abschreibungszeiten von Maßnahmen der Wasserversorgung ist besonderes Augenmerk auf Investitionsmaßnahmen zu legen.

Neben der Bevölkerungsentwicklung ist der spezifische Wasserbedarf ausschlaggebend für die Kosten. Die Tendenzen gehen zwar eher hin zu weiterem Wasser sparen, sind aber nur schwer abzuschätzen. Es ist aber nicht wahrscheinlich, dass der mittlere Tagesbedarf unter 70 l/(E·d) sinken wird.

Es wird empfohlen, kleinen Wasserversorgungsunternehmen im ländlichen Raum Hilfestellung bei deren Aufgabenerfüllung und Organisationsoptimierung zu geben. Eine Zusammenarbeit mit Abwasserzweckverbänden kann sinnvoll sein, muss aber
in jedem Einzelfall untersucht und bewertet werden. Eine derartige spartenübergreifende Zusammenarbeit kann insbesondere Kosten dämpfend wirken, wenn bei zu großen Leitungsschnitten im Trinkwassersystem das notwendige Austauschwasser (Spülwasser) gezielt und planmäßig zur Reinigung der Abwasserkanäle eingesetzt werden könnte.

Wenn in Einzelfällen auf eine dezentrale Wasserversorgung zurückgegriffen werden muss, ist auch dieser Service inklusive der Überwachung zentral abzusichern.

Eckpfeiler einer Modernisierung, Umstrukturierung und/oder Neuorganisierung der Wasserver- und Abwasserentsorgung im Sinne einer nachhaltigen Daseinsvorsorge sind

- die konsequente Berücksichtigung des Bevölkerungs- und Nachfragerückgangs in der Planung,
- die Festlegung von immissionsorientierten Qualitätszielen,
- die Berücksichtigung neuer, innovativer Technologien,
- die Einführung neuer Finanzierungssstrukturen und –möglichkeiten,
- die Durchführung von Planung und Betrieb in ausreichend kompetenten Strukturen und in einer Kooperation von Städten und Gemeinden

Berücksichtigung des Bevölkerungsrückgangs in der Planung

Im Rahmen des vorlaufenden „Demografiechecks“ muss jeder Anlagenbetreiber erarbeiten bzw. erarbeiten lassen, ob die Clusterzuordnung von Dauer sein wird oder sich voraussichtlich eine Entwicklung hin zu einem anderen Cluster ergeben wird.

In Fällen, in denen heute ein (kostenrelevanter) Handlungsbedarf besteht, aber aus der sich ändernden Clusterzuordnung dieser Handlungsbedarf wegen der demografischen Entwicklung langfristig entfällt, sollte genehmigungsrechtlich die Möglichkeit
Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

einer befristeten Duldung („Sanierungserlaubnis“) des Istzustandes nach Vorlage entsprechender Genehmigungsunterlagen ermöglicht werden.

Festlegung von immissionsorientierten Qualitätszielen

Als wesentliche Kriterien zur Beurteilung von Standards sind die gesetzlich festgeschriebenen Ziele heranzuziehen. Hier wird für den ländlichen Raum vorgeschlagen, sich zumindest bei der Priorisierung von Maßnahmen auf

- Hygiene,
- Gewässerschutz (guter Gewässerzustand, EU-Wasserrahmenrichtlinie) und
- Bodenschutz

Geeignete technische, organisatorische und finanztechnische Lösungen ergeben sich aus diesen Zielen in Abhängigkeit der örtlichen Situation und der zu erwartenden Entwicklung. Da letztere dynamisch verläuft, wird vorgeschlagen das im Rahmen dieser Studie entwickelte dynamische Clustermodell nach der vorgeschlagenen Weiterentwicklung anzuwenden.

Berücksichtigung neuer, innovativer Technologien

Heute herrscht Konsens, dass Abwasseranlagen in gering verdichteten Gebieten nicht nach gleichen Grundsätzen und Anforderungen wie in städtischen Gebieten geplant, gebaut und betrieben werden sollten, da ansonsten die spezifischen Kosten unverhältnismäßig hoch werden. Insbesondere im ländlichen Raum bieten sich Lösungsmöglichkeiten, die zukünftig bessere Beachtung finden müssen. Hierzu gehört zum einen der Blick auf bestehende Strukturen wie Teilortkanalisationen, aber auch die Diskussion über grundlegende ortsspezifische Systemwechsel.

Politische Zielvorgaben für technische Konzepte wie zum Beispiel zentrale Abwasserentsorgung (zentrale Kläranlagen mit langen Kanalnetzen) oder dezentrale Abwasserentsorgung (Abwasserbehandlung über biologische Kleinkläranlagen) sind für die technische Entwicklung nicht hilfreich, da Lösungen immer Einzelfall bezogen erarbeitet werden müssen.

Da derartige Sektor übergreifende Lösungen meist komplexer, in jedem Fall aber neu sind, wird als Defizit einerseits das Beharrungsvermögen von Verantwortlichen für konventionelle Systeme, anderseits mangenehndes Wissen und fehlender behördlicher Rückhalt identifiziert. Kleinteilige Organisationsstrukturen sind dann handlungsfähig, wenn diese Defizite abgebaut und Anreize für die Einführung neuer Formen interkommunaler Zusammenarbeit geschaffen werden.

Einführung neuer Finanzierungsstrukturen und -möglichkeiten

Es müssen neue Finanzierungsstrukturen eingeführt werden mitsamt dem Prinzip der Kostenwahrheit. Eine Änderung der Tarifstruktur wird allerdings nur eine geringe Auswirkung auf die Belastung der Bürger insgesamt haben, da die Art der Gebührenhebung keinen Einfluss auf die abzudeckenden Kosten hat. Nur mit aktiver und öffentlicher Auseinandersetzung ist es aber möglich, die finanzielle Auswirkung langfristiger Investitionsentscheidungen transparent zu machen und nachhaltige Investitionsentscheidungen zu treffen.

Im ländlichen Raum bietet sich anders als in den Städten die Möglichkeit, durch Nutzung bestehender bzw. Reaktivierung alter Systeme die Abwasseranlagen deutlich zu entlasten und damit Kosten zu senken. Hierzu gehört insbesondere die Instandsetzung und Aktivierung der Wegseitengräbensysteme und der Teilortkanäle für die Regenwasserbewirtschaftung und übergangsweise für die Grauwasserableitung sowie die Instandsetzung und Aktivierung von alten Drainagesystemen nach dem Vorbild der früheren Drainageverbände zur Vermeidung von Fremdwasser. Diese Möglichkeiten werden aber nur genutzt werden, wenn die entsprechenden Kosten – die meist deutlich unter den Kosten für die Ableitung dieser Niederschlags- und Fremdwässer in Kanälen liegen – auch über die Abwassergebühr finanziert werden können. Andernfalls werden wie bisher hohe Kosten für Abwasseranlagen akzeptiert, da für die günstigeren Alternativen keine Finanzierungsmöglichkeit besteht. Es wäre daher sinnvoll, die gebührenrechtlichen Umlagemöglichkeiten auch für „indirekte“ Maßnahmen der Abwasserentsorgung zu schaffen, wenn diese nachweislich das
Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

Gesamtsystem finanziell und technisch entlasten. Hier muss politisch gehandelt werden.

Durchführung von Planung und Betrieb in ausreichend kompetenten Strukturen und in einer Kooperation von Städten und Gemeinden

Neue, flexible Technologien sind ebenso vonnöten wie neue Betreibermodelle. Gerade die als Reaktion auf den demografischen Wandel häufig angesprochenen dezentralen Verfahrenstechniken (konventionelle kleine Kläranlagen, Neuartige Sanitärsysteme (NASS)) bedürfen auch organisatorischer Innovationen, um deren ordnungsgemäßen Betrieb und die entsprechenden Qualitätsziele dauerhaft zu gewährleisten.

Insbesondere bei den für eine Anpassung an die demografische Entwicklung wichtigen dezentralen Abwasseranlagen wie Kleinkläranlagen wird empfohlen, die Verantwortung beim zentralen Abwasserbeseitigungspflichtigen zu belassen. Als Minimallösung wird vorgeschlagen, zumindest Planung, Bau und Betrieb der dezentralen Anlagen in größeren Einheiten zu bündeln bzw. bei den Abwasserbeseitigungspflichtigen (Kommune, Verband, Unternehmen) zu belassen. Die Möglichkeit zur Übertragung der Abwasserbeseitigungspflicht auf Bürger ist auf seltene Extremfälle einzuschränken.
Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

Literaturverzeichnis

Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

[Beetz und Neu, 2009] Beetz, St., Neu, C. Lebensqualität und Infrastrukturentwicklung im ländlichen Raum. In [BBSR, 2009]

Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

[ESA / IWM Endbericht, 2002] Positionspapier: Auswirkungen der strukturellen Veränderungen in den typischen großflächigen Plattenbau-Wohnquartieren in
Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

Sachsen-Anhalt auf die Geschäftsentwicklung der Stadtwerke bezüglich der Medienver- und -entsorgung, Projekt - Nr.: 2008/01, Magdeburg, 2002

Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

134
Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

[Lauruschkus et al., 2009] Lauruschkus, F., Lutterbach, A., & Temme, T.: Erträge
Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

Download am 22.09.2010 unter http://www.thueringen.de/de/tmilfun/aktuell/presse/48698/uiindex.html

Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

Anlagen

Anlage 1 - Wettbewerb Daseinsvorsorge
Anlage 2 - Clustermodell
Anlage 3 - Zusammenfassende Tabelle Handlungsempfehlungen
Anlage 4 - Fragenkatalog Wasserversorgung
Anlage 5 - Auswertung EWA Umfrage
Anlage 6 - Interviewleitfaden Kommune
Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

Anlage 1: Vorschlag für einen Wettbewerb Daseinsvorsorge 2011

- sich (teilweise erstmals) systematisch mit der Tatsache des Schrumpfens und seinen Folgen für die Ressorts Wasser, Abwasser und Abfall auseinanderzusetzen und auf die lokalpolitische Agenda zu setzen, so dass sich auch die Bürger und Unternehmen damit beschäftigen;
- Fakten, Diagnosen und erste Prognosen über Versorgung und Preise von Wasser, Abwasser und Abfall zusammenzutragen und zu diskutieren;
- etwaige positive Erfahrungen auf diesem Gebiet zu dokumentieren und der Fachöffentlichkeit bekannt zu machen;
- strategische Überlegungen zur Bewältigung der anerkannten Zukunftsprobleme zu entwickeln und zur Diskussion zu stellen.

So bewirkt ein solcher Wettbewerb bereits vor der Abgabefrist eine wesentliche Aufwertung des Themas vor Ort, aber auch eine ebenso breite wie vertiefende fachliche Bearbeitung. Diskussions- und Konsensfindungsprozesse werden angestoßen. Nach dem Wettbewerb geht es um

- eine Streuung besonders überzeugender Konzepte, damit es zu einer horizontalen Diffusion der best practices kommt;
- eine Qualifizierung der Exekutive sowie der Legislative durch den nun gewonnenen Überblick;
- die Verdichtung der Erkenntnisse und die Erhöhung der Sichtbarkeit etwa durch Bundeskongresse „Daseinsvorsorge 2020“, sowie um
- die nunmehr viel genauer fein abzustimmende Erstellung und Verbreitung von fachlichen Hilfestellungen.
Anlage 2: Ansatz für ein Clustermodell „Handlungsstrategien für den Umgang mit Abwasser in vom demografischen Wandel betroffenen ländlichen Raum“

Kennzeichen des in ersten Grundzügen vorgestellten und weiter zu entwickelnden Clustermodells ist, dass jedes Einzugsgebiet in diese Clusterung eingeordnet werden kann. Von besonderer Bedeutung ist dabei eine Einschätzung der zukünftigen Entwicklung dahingehend, ob die spezifische Einordnung in ein Cluster auch dauerhaft von Bestand ist oder ob sich nach momentanen Erkenntnissen eine Verschiebung in ein anderes Cluster ergeben wird. Im letzten Fall sind die Ansätze des prognostizierten Clusters zugrunde zu legen.

Für jedes Cluster ist zum einen der Handlungsbedarf für den Betreiber des Abwassersystems aufgelistet (hier sind bei der Weiterentwicklung des Clustermodells vertiefende Angaben zu machen), zum anderen werden wo notwendig und sinnvoll politische Handlungsempfehlungen (kursiv).

Zum Verständnis der Clusterbildung ist anzumerken:

• Die Clusterung sollte sich immer auf ein zusammenhängendes, nach wasserwirtschaftlichen und nicht politischen Kriterien festgelegtes Gesamteinzugsgebiet beziehen, das im Einzelfall deutlich von bisherigen „Grenzziehungen“ abweichen wird.

• Die in der Wasserwirtschaft gebräuchlichen Begriffe zentral, semizentral und dezentral sind nicht klar definiert. Für die Clusterung gilt:
 • dezentral = Kleinkläranlagen und Kläranlagen mit Regenwetterzufluss mit einer Ausbaugröße bis 50 E (Abkürzung dAB)
 • semizentral = kleine Kläranlagen für Teilorte des Einzugsgebietes bis 2.000 E (Abkürzung sAB)
 • zentral = mittlere und große Kläranlagen ab 2.000 E (Abkürzung zAB)

• Es wird unterschieden zwischen Erschließungsgrad (öffentliche Kanalisation vorhanden), Anschlussgrad (öffentliche Kanalisation an zentrale Kläranlage angeschlossen) und Auslastung der zentralen Kläranlage.

Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

<table>
<thead>
<tr>
<th>Clusterbezeichnung</th>
<th>Erschließungsgrad Kanalisierung [%]</th>
<th>Anschlussgrad an zAB [%]</th>
<th>Auslastung zAB [%]</th>
<th>Handlungsbedarf beim Kläranlagenbetreiber / Handlungsempfehlungen an Politik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis</td>
<td>95 bis 100</td>
<td>95 bis 100</td>
<td>95 bis 100</td>
<td>Kein Handlungsbedarf</td>
</tr>
<tr>
<td>Überlast zAB 1 (Ü1)</td>
<td>95 bis 100</td>
<td>95 bis 100</td>
<td>>> 100</td>
<td>Klassische Ingenieuraufgabe zur Kapazitätserweiterung der zAB; kein politischer Handlungsbedarf</td>
</tr>
<tr>
<td>Überlast zAB 2 (Ü2)</td>
<td>95 bis 100</td>
<td><< 95</td>
<td>>> 100</td>
<td>Ingenieurtechnische und wirtschaftliche Machbarkeitsstudie mit Varianten: - weiterer Anschluss des Kanalnetzes an die zAB und Ausbau zAB - Abwasser erschlossener aber noch nicht angeschlossener Teileinzugsgebiete semizentral oder dezentral behandeln, Teilausbau zAB; - bereits an die zAB angeschlossene Teileinzugsgebiete "abklemmen" und an sAB oder dAB anschließen, kein Ausbau zAB; kein politischer Handlungsbedarf</td>
</tr>
<tr>
<td>Überlast zAB 3 (Ü3)</td>
<td><< 95</td>
<td><< 95</td>
<td>>> 100</td>
<td>Ingenieurtechnische und wirtschaftliche Machbarkeitsstudie mit Varianten wie vor, zusätzliche Varianten: - Erschließung fortführen oder dAB kein politischer Handlungsbedarf</td>
</tr>
</tbody>
</table>
Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

<table>
<thead>
<tr>
<th>Unterlast zAB 1 (U1)</th>
<th>95 bis 100</th>
<th>95 bis 100</th>
<th><< 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handlungsoptionen sind beschränkt auf den Kläranlagenstandort, Möglichkeiten zur Anlagenauslastung suchen wie:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Annahme von Schlamm anderer Kläranlagen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Zusammenlegungen von Kläranlagen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Aufnahme von Fäkalschlamm aus dAB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Aufnahme von Co-Fermenten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Falls diese Möglichkeiten nicht gegeben sind, Außenbetriebnahme von Anlagenteilen;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Politische Handlungsempfehlungen:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Außenbetriebnahme von Anlagenteilen zulassen (Verschlechterungsgebot abgeleitet aus § 27(1)1 WHG außer Kraft setzen)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Zulassung der Co-Fermentation (Mitbehandlung von nass vergärbaren Abfällen) auf Kläranlagen</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unterlast zAB 2 (U2)</th>
<th>95 bis 100</th>
<th><< 100</th>
<th><< 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anschluss Restnetz an zAB, Handlungsoptionen wie U1, alternativ Beibehaltung des geringen Anschlussgrades, Handlungsoptionen wie U1, nicht angeschlossene Teilnetze an sAB oder an benachbarte Kläranlagen anschließen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Politische Handlungsempfehlung wie U1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unterlast zAB 3 (U3)</th>
<th><< 100</th>
<th><< 100</th>
<th><< 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kompletterschließung und Anschluss Restnetz an zAB, Handlungsoptionen wie U1, alternativ Kompletterschließung aber Beibehaltung des geringen Anschlussgrades, Handlungsoptionen wie U1, nicht angeschlossene Teilnetze an sAB oder an benachbarte Kläranlagen anschließen alternativ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keine weitere Erschließung, dAB oder NASS-Systeme installieren, Handlungsoptionen für zAB wie U1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Politische Handlungsempfehlung wie U1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anlage 3: Zusammenfassende Tabelle „Operable Handlungsempfehlungen“

<table>
<thead>
<tr>
<th>Handlungsempfehlung</th>
<th>Umzusetzen durch</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Wettbewerb zur Ausgestaltung der Daseinsvorsorge im Bereich der technischen Infrastruktur auszuloben</td>
<td>Bund</td>
</tr>
<tr>
<td>2. Studie über Zusammenhang von Ausgestaltung der Daseinsvorsorge im Bereich der technischen Infrastruktur und der Lebensqualität im ländlichen Raum erstellen</td>
<td>Bund</td>
</tr>
<tr>
<td>3. Interdisziplinäre Studie zu Möglichkeiten und Chancen einer geordneten Siedlungspolitik bei extremen Schrumpfungsbedingungen in Auftrag geben</td>
<td>Bund</td>
</tr>
<tr>
<td>5. Leitlinien und Vorgaben für erprobte, funktionsfähige evtl. sektorübergreifende Strukturen und Organisationsmöglichkeiten in Abhängigkeit von vorhandener und/oder geplanter technischer Infrastruktur erarbeiten</td>
<td>Bund, Länder, Kommunen</td>
</tr>
<tr>
<td>6. Kriterien für einen Demografiecheck in den Bereichen Trinkwasserversorgung und Abfall- und Abwasserentsorgung erarbeiten</td>
<td>Bund und Länder</td>
</tr>
<tr>
<td>7. Bundesweites Monitoring der Demografiechecks und ihrer Auswirkungen</td>
<td>Bund und Länder</td>
</tr>
<tr>
<td>9. Erarbeitung und Test eines Leitfadens für ein einfach anwendbares Werkzeug zur Unterstützung der unteren Kommunalautsicht, das diese in die Lage versetzt ohne Hilfe von Äußerhalb die Wirtschaftlichkeit von Zweckverbänden und Eigenbetrieben zu prüfen und diesen Hilfestellungen zur Verbesserung zu geben</td>
<td>Länder</td>
</tr>
<tr>
<td>10. Erstellung einer einfachen, auf kommunale Entscheidungsträger und engagierte Bürger ausgerichtete Publikation zur Wirkung von Gebührenersatzungen</td>
<td>Bund</td>
</tr>
<tr>
<td>11. Erstellung einer einfachen, auf kommunale Entscheidungsträger und engagierte Bürger ausgerichtete Publikation zu den Möglichkeiten und Chancen der Zusammenarbeit von Wasser- und Abwasserverbänden (Zusammenschluss, Nachbarschaftshilfe, ...)</td>
<td>Bund</td>
</tr>
<tr>
<td>12. Erarbeitung von Hilfestellungen für Kleinstwasserversorgungsunternehmen</td>
<td>Bund mit DVGW</td>
</tr>
<tr>
<td>13. Entwicklung eines Clustermödells (siehe Anlage 2) zur strukturierten Identifikation von Handlungsstrategien und Maßnahmen im Bereich der Abwasserentsorgung, das bundesweit in ländlichen Regionen anwendet werden kann.</td>
<td>Bund</td>
</tr>
<tr>
<td>14. Schaffung von Regelungen, die sicher stellen, dass die Verantwortung für dezentrale Abwasseranlagen wie Kleinkläranlagen in der Verantwortung des Abwasserbeseitigungspflichtigen bleibt.</td>
<td>Länder</td>
</tr>
<tr>
<td>16. Schaffung von Regelungen, die festlegen, dass konsequent das Immissionsprinzip bei der Festlegung von Einleitbedingungen der Überwachung anzuwenden ist.</td>
<td>Länder</td>
</tr>
</tbody>
</table>
Anlage 4 Fragenkatalog „Wasserversorgung“

Unternehmen

1. Benennen Sie Ihr Versorgungsunternehmen:

2. Welche Art Organisationsstruktur hat es?
 O kommunales
 O teilprivatisiert

 Wem gehören die Anteile? __

 __

Auswirkungen des demografischen Wandels im Versorgungsgebiet:

3. Ist in Ihrem Versorgungsgebiet ein starker Wasserabgabe-Rückgang zu verzeichnen?
 O Ja O Nein

 Welche Bereiche sind vor allem betroffen?
 O Haushalte
 O Industrie
 O Sonstiges __

 Schätzen Sie bitte prozentual den gesamten Wasserabgabemenge-Rückgang in den letzten 5 bis 10 Jahren ab.

 _____________ %

4. Welche Mängel in der Wasserqualität werden / wurden in Ihrem Verteilungsnetz festgestellt, die auf lange Verweilzeiten bzw. Stagnationserscheinungen hindeuten?
 O Trübung
 O erhöhte Koloniezahlen
 O Überschreitung der bakteriologischen Parameter
 O Rostwasser
 O Sonstiges __

 O keine

 Wie oft? __

Technische Anpassungsmaßnahmen

5. Wurden in Ihrem Versorgungsgebiet die Aufbereitungskapazitäten umverteilt?
 O Zuschüttung einzelner Brunnen / Brunnenanlagen
 O Schließung einzelner Wasserwerke
 O Erhöhung der Aufbereitungskapazitäten anderer Wasserwerke bis auf Volllast
6. Wie werden die Standorte für die Netzspülungen bestimmt?

__

Wie wird der zeitliche Turnus festgelegt?

__

Mit welchen Verfahren erfolgen die Spülungen?

O Wasseraustausch durch den Wasserablass aus einem Hydranten
O Luft/Wasser-Spülung
O Sonstige __

Welche Ziele verfolgen die Spülungen?

O Beseitigung der bakteriologischen Problematik
O Sedimentaustrag
O Rostwasserbeseitigung
O Sonstiges __

7. Wie werden die Löschreserven in Ihrem Versorgungsgebiet in ländlichen Kommunen bereitgestellt?

O Löschteiche ________________%

O Löschreserven in Wasserbehältern mit entsprechender Dimensionierung der Rohrleitungen ________________%

8. Haben Sie für Ihr Versorgungsnetz ein hydraulisches Modell erstellen lassen?

O Ja O Nein

Mit welchem Programm (welches Büro)?

__

Welche Gründe / Probleme haben Sie dazu bewegt?

__

__

9. Welche Optionen zur Verbesserung der IST-Situation wurden bei der Simulation überprüft?

__

__

Welche strategischen Entscheidungen wurden aus den Ergebnissen der Simulation abgeleitet?

__

__
10. Haben Sie in ländlichen Räumen Ihres Versorgungsgebietes Rückbau / Umbaumaßnahmen durchgeführt?
 O Netzteil-Stilllegung
 O Verkleinerung der Nennweiten
 O Umschluss nicht benutzter Leitungen
 O Neuerrichtung fehlender Ringverbindungen
 O Einbau von Absperrarmaturen zur Abschieberung der Maschen
 O echter Rückbau
 O Sonstiges ________________________________

Strukturelle Anpassungsmaßnahmen

11. Begegnen Sie dem demografischen Wandel auch mit strukturellen Veränderungen?
 O Fusionen
 O interkommunale Kooperationen
 O Outsourcing: Welche Bereiche?

 O Sonstiges ________________________________

12. Wird oder wurde in den letzten Jahren das Versorgungsnetz in Ihrem Versorgungsgebiet durch den Anschluss ländlicher Kommunen erweitert?
 O Ja O Nein
 Welche Gründe sprachen für diesen Erweiterungsbeschluss?
 O Erhöhung der Wasserabgabemenge
 O Sicherung der Wasserqualität
 O Umverteilung der Kapazitäten zur Verbesserung betrieblicher Effizienz
 O Sonstiges ________________________________

13. Erfolgte durch die Erschließung der Übergang der Versorgungspflicht von betroffenen Kommunen auf Ihr Unternehmen?
 O Ja O Nein

14. Aus welchen Quellen wurden die Kommunen im Versorgungsgebiet früher versorgt?
 O eigene(r) Brunnen ____________%
 O Talsperrenwasser ____________%
 O Sonstiges ________________________________

Aus welchen Quellen wird das Wasser jetzt für angeschlossene Kommunen bereitgestellt?
 O Grundwasser ____________%
Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

O Talsperrenwasser %
O Sonstiges

Haben sich die Wassergebühren in den neu angeschlossenen Kommunen im Zusammenhang mit der Erschließung geändert?
O erhöht
O gleich geblieben
O gesenkt

Finanzierung

15. Haben bis jetzt die Anpassungsmaßnahmen, die auf den demografischen Wandel zurückzuführen sind, zur Erhöhung des Wassertarifs in Ihrem Versorgungsgebiet geführt?
O Ja O Nein
Ist ein Anstieg in den nächsten Jahren zu erwarten?
O Ja O Nein

16. Wie hoch ist der Grundbeitrag €/Monat
sowie mengenabhängigen Gebühren €/m³
in Ihrem Versorgungsgebiet zur Zeit?

17. Aus welchen Mitteln wurden / werden die Anpassungsmaßnahmen finanziert?
O Fördermittel Bund
O Fördermittel Land
O Beiträge und Entgelte
O Sonstiges

18. Haben Sie in Ihrem Unternehmen neue Geschäftsfelder, Dienstleistungen etabliert oder denken Sie darüber nach?
O Ja O Nein
Welche?

Allgemein

19. Welche Lösungsansätze sehen Sie zur Verbesserung der Situation?

Technisch:

Organisatorisch:

Rechtlich:
Dear EWA friends,

I was asked by the Ministry of Interior of Germany to prepare a study on the influences of demographic change on drinking water, wastewater and waste management infrastructure. The study shall be a basis for a strategy of the German government to deal with the problems arising from demographic changes.

Demographic changes mean especially for the rural areas in the eastern federal states in Germany: Average age of people is rising and population is shrinking rather quickly; mostly young people leave the area. We already observe that this is ending up in very high fees for water and wastewater and that discussions start, whether a central drinking water supply and wastewater disposal is still affordable here. Some communities would like to find a new definition of their services for the public.

The Ministry of Interior has the duty to prepare recommendations for actions on the basis of existing studies and good and bad examples in Germany but in other European countries also. We have to collect, summarize and interpret all those. Finally we will propose recommendations from our point of view.

For Germany we have a pretty good overview, but for other European countries not.

Therefore I ask you to help me.

I am looking for studies, publications (also grey literature is welcome) or reported examples, which address the impact of demographic shrinking and aging processes and may be, propose adaptation and mitigation actions.

It would be fine, if they are in German, English or French so that I would not need a translator, but any other language is welcome.

I will be very happy, if you would support me asap, as we have to do our job in a very short time. We have to deliver the results by end of October 2010.

Hope to see some of you in Munich next week

Regards

Jörg Londong
Auswirkungen des demografischen Wandels auf die technische Infrastruktur von Abfallentsorgung, Wasserversorgung und Abwasserbeseitigung in ländlichen Regionen in den neuen Bundesländern

Member of Council, MC and ETSC of EWA

Zusammenstellung der Informationen aus den Antworten der EWA-Mitglieder

<table>
<thead>
<tr>
<th>Staat</th>
<th>Bevölkerungsprognosen, Studien, Hinweise</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kroatien</td>
<td>Abnahme der Bevölkerung 2010 bis 2031 um 14,7% mit steigender Jährlicher Abnahme von 0,33%/a auf 0,61%/a in 2031</td>
<td>Professor Ivo Nejašmić, PhD, Department of Geography, Faculty Science, University of Zagreb, in Think Tank Political Science Research Centre, Gupčeva 14a, 10 090 Zagreb, Croatia http://www.cpi.hr/download/links/en/10698.pdf</td>
</tr>
<tr>
<td>Schweiz</td>
<td>In der Schweiz gab es bis heute keine Region, deren Bevölkerung rückläufig war. Vorhersagen für die nächsten 2 Jahrzehnte zeigen, dass nur für 2 kleine Gebirgskantone (von insgesamt 26 Kantonen) ein Rückgang der ständigen Wohnbevölkerung von geschätzten -1.9% (Uri) und -5.3% (Glarus) erwartet wird. Der Kanton Glarus ist daran, sich u.a. im Hinblick auf diese Entwicklung durch Gemeindefusionen (von 30 auf 3 bis im nächsten Jahr) neu zu organisieren. In beiden Kantonen werden oft Wohnungen für die ständigen Einwohner in Ferienwohnungen umfunktioniert; auch entwickelt sich der Tourismus dort immer noch weiter (v.a. Uri). Dies entschärft allfällige Finanzierungsprobleme der Wasserinfrastruktur. Fazit: in der Schweiz haben wir keine eigentlichen Probleme wie Ihr in den östlichen Ländern. Meines Wissens haben wir auch keine Studien zu diesem Thema.</td>
<td>Olivier Chaix Vizepräsident VSA - Verband Schweizer Abwasser- und Gewässerschutzfachleute</td>
</tr>
<tr>
<td>Norwegen</td>
<td>Keine Bevölkerungsrückgang, eher Zuwachs</td>
<td>Haakon Thaulow, NIVA</td>
</tr>
<tr>
<td>Slovakie</td>
<td>In the Slovakia we do not have significant problem with demographic changes. However similarity is in prices for water, that for some social levels the levels is public water supply and collection not affordable product. People refuse to connect themselves to new infrastructure and they use own wells and sceptics. This problem is significant specially in</td>
<td>Miro Kollar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MINISTRY OF ENVIRONMENT OF THE SLOVAK REPUBLIC Elaborated by: Water</td>
</tr>
<tr>
<td>Country</td>
<td>Summary</td>
<td>Source</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Tschechien</td>
<td>One of the key aspects of current demographic trends in the Czech Republic is the shrinking population, due to a natural decline and a sharp drop in the birth rate. The National Development Plan for Water Supply and Sewerage Systems provides framework for building up the state administration information system in the sector of water supply and sewerage systems of all levels, which will be constituted by the programme and the database of the National Development Plan for Water Supply and Sewerage Systems. The information system of the National Development Plan for Water Supply and Sewerage Systems will become one of the tools for registration of the basic demographic, balance, technical and economic data in the sector of water supply and sewerage systems.</td>
<td>Report on Water Management in the Czech Republic in 2008</td>
</tr>
<tr>
<td>Finnland</td>
<td>In Finland the contrast is enormous between urban/metropolitan and rural regions like the Helsinki metropolitan area and the sparsely populated communities in the northern and eastern parts of the country. Peripheral communities struggle for survival, facing a situation where population decline has created financial problems for local authorities due to oversized services and tight funding. Metropolitan areas, especially suburban communities, face the opposite situation, namely a growth in population resulting in a need to increase capacity in educational and social services.</td>
<td>Sandberg, Siv, Local government in Finland, Åbo Akademi University, Finland), p. 27</td>
</tr>
<tr>
<td>Spanien</td>
<td>The current population of Spain is about 40.3 million.</td>
<td>Report on Water Management in the Slovak Republic in 2008</td>
</tr>
<tr>
<td>Land</td>
<td>Aussage</td>
<td>Quelle</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Deutschland</td>
<td>The median age is some 39.5. Life expectancy is 79.5, 76.2 for men and 83.1 for women, and thus in the same range as the other countries under study. The total fertility rate of 1.28 children born per woman is one of the lowest in the EU. The Spanish population will decrease by 9.4 million over the coming 50 years, according to a report by the United Nations' population division. This represents a 24% net loss in current population. In 2050, Spain will be the country with the highest percentage of old people in the world.</td>
<td>df: The World Factbook, Spain (http://www.cia.gov/cia/publications/factbook/geos/sp.html#People).</td>
</tr>
<tr>
<td>Großbritannien</td>
<td>Es wird zur Zeit eine Studie erstellt, Entwürfe sind aber noch nicht zugänglich</td>
<td>Peter Matthews</td>
</tr>
<tr>
<td>Polen</td>
<td>Keine Studien bekannt</td>
<td>Ryszard Blazejewski</td>
</tr>
</tbody>
</table>
Anlage 6: Interview-Leitfaden „politische Akteure auf kommunaler Ebene“

Handlungsfeld technische Infrastruktur Abfall, Wasser, Abwasser

Wo orton Sie Ihre Gemeinde / Ihren Kreis beim Thema „demografischer Wandel“ ein? (Stichwort: stark schrumpfende Bevölkerung, stagnierend, wachsend)

Wo sehen Sie die Hauptprobleme im Zusammenhang mit Schrumpfungsprozessen?

Ist das Thema Schrumpfung auch in Diskussion bei den Themenfeldern Abfallentsorgung, Wasserversorgung, Abwasserentsorgung?

Wie ist die Abfallentsorgung, Wasserversorgung, Abwasserentsorgung in Ihrer Region organisiert? (Stichwort: kommunal, Zweckverbände, Gemeinde übergreifend, privat, öffentlich)

Wird das Theme bei den verantwortlichen Akteuren vor Ort und den Bürgern diskutiert?

Wo wirken sich die Schrumpfungsprozesse am deutlichsten aus? (Stichwort: Gebühren, Beiträge, Komfort, Umweltstandards)

Sind die Kommunen aus eigener Kraft in der Lage, die Probleme bezüglich netzgebundener Infrastruktur zu lösen?

Gibt es Interesse der Bürger / Akteure vor Ort sich an zukünftigen Veränderungen im Bereich der kommunalen technischen Infrastruktur zu beteiligen? Welche Erfahrungen haben Sie mit Beteiligungsverfahren?

Wo sehen Sie Konfliktlinien? (Stichwort: Kommune-Bürger, Kommune/Kreis – Land, Politik – Verwaltung)

Wo sehen Sie eine Schmerzgrenze für die Bürger in schrumpfenden Regionen, was finanzielle Belastungen, Definition von Mindeststandards usw. angeht? Wie können Ihrer Meinung nach Mindeststandards der Ver- und Entsorgung aussehen? (Stichworte: Abfuhrzyklen Abfall, Abfalltrennung, zentrale/dezentrale Ver- und Entsorgung (Kläranlagen, abflusslose Gruben, Hausbrunnen)

Wie schätzen Sie den Nutzen/Sinn der Förderpolitik durch Land und Bund ein? An welchen Stellschrauben würden Sie ansetzen um die Förderpolitik weiterzuentwickeln.